class='head no_bottom_margin' id='sec1title'>Int'/> Hijacking the Hijackers: Escherichia coli Pathogenicity Islands Redirect Helper Phage Packaging for Their Own Benefit
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Hijacking the Hijackers: Escherichia coli Pathogenicity Islands Redirect Helper Phage Packaging for Their Own Benefit
【2h】

Hijacking the Hijackers: Escherichia coli Pathogenicity Islands Redirect Helper Phage Packaging for Their Own Benefit

机译:劫持劫机者:大肠杆菌致病性岛重定向帮助程序噬菌体包装为其自身利益

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe acquisition of mobile genetic elements (MGEs) that carry virulence factors is a major event that can transform an avirulent or weakly virulent strain into a multi-resistant hypervirulent strain. In spite of the importance of their consequences, the mechanisms underlying the genetic transfer of pathogenicity islands among bacteria remain unidentified in most cases. In recent years, we have described and characterized a new class of chromosomally integrated mobile pathogenicity islands: the phage-inducible chromosomal islands (PICIs) (). The PICIs are widespread among Gram-positive cocci and Gram-negative bacteria (, ), and they are clinically relevant because they carry and disseminate genes for bacterial superantigens, virulence, and antibiotic resistance (). Following induction by a helper phage, PICIs excise from the bacterial chromosome, replicate, and are packaged into phage-like particles composed of phage virion proteins, leading to very high frequencies of intra- as well as inter-generic transfer (, , ).Although the biology of the Gram-positive PICIs has been extensively studied (), it remains a mystery how the PICI elements present in the Gram-negative bacteria hijack the phage machinery for their preferential packaging and transfer in nature and how these elements interfere with helper phage reproduction. To address these questions, we have analyzed one of these elements, EcCICFT073, present in the uropathogenic Escherichia coli CFT073 strain. This PICI raised our curiosity because of its role in virulence and because this element can be mobilized by the archetypical E. coli λ and 80 phages (). More importantly, our previous results had demonstrated that EcCICFT073 can interfere with phage reproduction using a novel mechanism of phage interference. Although most Gram-positive PICIs interfere with phage reproduction by promoting the formation of small PICI capsids that are much too small for the larger phage genomes (, , , , , ), that was not the case for the EcCICFT073 element, which is packaged into phage-sized capsid (href="#bib11" rid="bib11" class=" bibr popnode">Fillol-Salom et al., 2018).How do cos phages, such as λ and 80, package their DNA? The terminase of phage λ is among the best biochemically characterized proteins that catalyze this process and provides an ideal model for DNA packaging. The enzyme is a hetero-oligomer composed of gpNu1 (also called small terminase [TerS]) and gpA (large terminase [TerL]) subunits. Genome packaging begins with terminase assembly at cos, the packaging initiation site in the DNA concatemer. The λ cos sequence has three regions required to interact with the packaging machinery: cosQ; cosN; and cosB. Termination of phage packaging requires cosQ, and TerL completes this process by cutting the DNA at cosN. Initiation of DNA packaging requires both cosN and cosB sites; cosB consists of three binding sites or R elements (R3, R2, and R1) that are required for λ TerS binding to initiate the phage packaging process (href="#bib26" rid="bib26" class=" bibr popnode">Rao and Feiss, 2008; href="#mmc1" rid="mmc1" class=" supplementary-material">Figure S1).In a previous study, we found that EcCICFT073 requires the phage-encoded TerS for packaging. We also demonstrated that EcCICFT073 carries two cos sites, cos1 and cos2, with cos1 being required for the λ- and 80-mediated transfer of the element (href="#bib11" rid="bib11" class=" bibr popnode">Fillol-Salom et al., 2018). Surprisingly, although both EcCICFT073 cos sites have cosQ and cosN sequences that resemble those present in the E. coli λ and 80 phages, we were unable to identify the phage cosB element in the EcCICFT073 region (href="#mmc1" rid="mmc1" class=" supplementary-material">Figure S1A; href="#bib11" rid="bib11" class=" bibr popnode">Fillol-Salom et al., 2018). This observation posed the question, if EcCICFT073 requires the phage machinery for packaging, why does it carry a different cosB sequence in its genome, which would be poorly recognized by the phage TerS protein? Does EcCICFT073 encode uncharacterized proteins involved in PICI packaging? And how does EcCICFT073 interfere with phage reproduction? We have unraveled here the mechanism of molecular piracy used by the E. coli PICIs to be highly and preferentially packaged and transferred in nature.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介获得带有毒力因子的移动遗传元件(MGE)是一项重大事件,可以将无毒力或弱毒力菌株转化为多抗性高毒力菌株。尽管后果很重要,但在大多数情况下,致病岛在细菌之间遗传转移的潜在机制仍不清楚。近年来,我们已经描述并描述了一种新型的染色体整合的移动致病岛:噬菌体诱导性染色体岛(PICIs)()。 PICIs在革兰氏阳性球菌和革兰氏阴性细菌中广泛存在,并且在临床上具有相关性,因为它们携带并传播细菌超抗原,毒力和抗生素抗性的基因。辅助噬菌体诱导后,PICI从细菌染色体上切除,复制并包装到由噬菌体病毒体蛋白组成的噬菌体样颗粒中,从而导致内部和内部之间的极高频率转移(“”)。尽管已经对革兰氏阳性PICI的生物学进行了广泛研究(),但革兰氏阴性细菌中存在的PICI元素如何劫持噬菌体机器以实现其在自然界中的优先包装和转移以及这些元素如何干扰辅助物仍是一个谜。噬菌体繁殖。为了解决这些问题,我们分析了尿路致病性大肠杆菌CFT073菌株中存在的一种成分EcCICFT073。这个PICI引起了我们的好奇心,因为它在毒力中发挥了作用,并且因为这种元素可以被典型的大肠杆菌λ和80个噬菌体()所动员。更重要的是,我们以前的结果表明,EcCICFT073可以利用一种新型的噬菌体干扰机制来干扰噬菌体的繁殖。尽管大多数革兰氏阳性PICI通过促进小PICI衣壳的形成来干扰噬菌体繁殖,而小PICI衣壳对于较大的噬菌体基因组(,,,,,,)来说太小了,但EcCICFT073元件却不是这样噬菌体大小的衣壳(href="#bib11" rid="bib11" class=" bibr popnode"> Fillol-Salom et al。,2018 )。cos噬菌体,例如λ和80,包装他们的DNA?噬菌体λ的末端酶是最好的生物化学特征蛋白之一,可催化该过程并为DNA包装提供理想的模型。该酶是由gpNu1(也称为小末端酶[TerS])和gpA(大末端酶[TerL])亚基组成的杂合寡聚体。基因组包装从末端酶在cos(DNA串联体中的包装起始位点)处组装开始。 λcos序列具有与包装机械相互作用所需的三个区域:cosQ; cosN;和cosB。终止噬菌体包装需要使用cosQ,TerL通过在cosN处切割DNA来完成此过程。 DNA包装的启动需要cosN和cosB位点。 cosB由三个结合位点或R元素(R3,R2和R1)组成,λTerS结合需要这些结合位点或R元素来启动噬菌体包装过程(href =“#bib26” rid =“ bib26” class =“ bibr popnode” > Rao and Feiss,2008 ; href="#mmc1" rid="mmc1" class="Supplementary-material">图S1 )。在先前的研究中,我们发现EcCICFT073需要用于包装的噬菌体编码TerS我们还证明了EcCICFT073带有两个cos位点cos1和cos2,元素的λ和80介导的转移需要 cos 1(href =“#bib11” rid =“ bib11“ class =” bibr popnode“> Fillol-Salom等人,2018 )。出人意料的是,尽管两个EcCICFT073 cos 位点的 cos Q和 cos N序列都与 E中的序列相似。大肠杆菌λ和80个噬菌体,我们无法识别EcCICFT073区域中的噬菌体 cos B元素(href =“#mmc1” rid =“ mmc1” class =“材质>图S1 A; href="#bib11" rid="bib11" class=" bibr popnode"> Fillol-Salom et al。,2018 )。这项观察提出了一个问题,如果EcCICFT073是否需要噬菌体包装机器,为什么它的基因组中会携带不同的 cos B序列,而噬菌体TerS蛋白无法识别该序列? EcCICFT073是否编码参与PICI包装的未表征蛋白? EcCICFT073如何干扰噬菌体繁殖?我们在这里阐明了 E使用的分子盗版机制。大自然中优先包装和转移的大肠杆菌 PICI。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号