class='head no_bottom_margin' id='sec1title'>Int'/> Selective Autophagy of Mitochondria on a Ubiquitin-Endoplasmic-Reticulum Platform
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Selective Autophagy of Mitochondria on a Ubiquitin-Endoplasmic-Reticulum Platform
【2h】

Selective Autophagy of Mitochondria on a Ubiquitin-Endoplasmic-Reticulum Platform

机译:泛素-内质网平台上线粒体的选择性自噬

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionAutophagy is a conserved pathway for nutrient supply during periods of starvation, classified as non-selective autophagy, or for degradation of intracellular large structures that are pathogenic or have become damaged, classified as selective autophagy (, , ). In both pathways, a novel double membrane organelle termed autophagosome is formed in the cytosol that then engulfs its cargo for eventual delivery to the lysosomes and degradation (, ). For non-selective autophagy, the cargo is total cytosol, and its degradation in the lysosomes generates nutrients essential during starvation (, ). In contrast, specific elimination of large membrane structures—damaged mitochondria, endoplasmic reticulum (ER) fragments, or bacterial pathogens—is the purview of selective autophagy and constitutes an essential quality control system (, , , ).The pathway of autophagosome formation in response to starvation is now well understood, although the exact origin of the autophagosomal membrane is still a matter of debate (, ). For autophagosomes that originate from within PI3P-enriched regions of the ER termed omegasomes, the pathway starts by inactivation of the protein kinase complex mTORC1 and the concomitant activation of the autophagy-specific ULK protein kinase complex composed of the protein kinase ULK1 (or its homolog ULK2) and the adaptors FIP200, ATG13, and ATG101 (, ). Activated ULK complex translocates to tubulovesicular regions of the ER marked by ATG9 vesicles, and these sites attract the lipid kinase complex termed VPS34 complex I, which produces PI3P and forms omegasomes (href="#bib71" rid="bib71" class=" bibr popnode">Walker et al., 2008, href="#bib30" rid="bib30" class=" bibr popnode">Karanasios et al., 2016). PI3P within the omegasome membrane attracts members of the WIPI family of proteins that in turn bind to the protein ATG16 and mediate the covalent modification of the LC3 and GABARAP proteins with phosphatidylethanolamine, which is an important requirement for the formation of autophagosomes (href="#bib76" rid="bib76" class=" bibr popnode">Wilson et al., 2014, href="#bib85" rid="bib85" class=" bibr popnode">Yu et al., 2018).The process of selective autophagy requires a set of proteins connecting the targeted cargo to the autophagic machinery and a signal on the cargo to mark it for sequestration (href="#bib25" rid="bib25" class=" bibr popnode">Johansen and Lamark, 2011, href="#bib60" rid="bib60" class=" bibr popnode">Rogov et al., 2014). Selective autophagy receptors are responsible for bridging cargo with the forming autophagosome. In yeast, they include Atg32 for mitochondrial autophagy (mitophagy, href="#bib54" rid="bib54" class=" bibr popnode">Okamoto et al., 2009, href="#bib27" rid="bib27" class=" bibr popnode">Kanki et al., 2009), Atg36 and Atg30 for autophagy of peroxisomes (pexophagy, href="#bib47" rid="bib47" class=" bibr popnode">Motley et al., 2012, href="#bib50" rid="bib50" class=" bibr popnode">Nazarko et al., 2014), Atg39 and Atg40 for autophagy of ER membranes (href="#bib44" rid="bib44" class=" bibr popnode">Mochida et al., 2015), and Atg19/Atg34 for the Cvt pathway (href="#bib63" rid="bib63" class=" bibr popnode">Scott et al., 2001, href="#bib66" rid="bib66" class=" bibr popnode">Suzuki et al., 2010, href="#bib73" rid="bib73" class=" bibr popnode">Watanabe et al., 2010). Equivalent and homologous proteins exist for mammals and for many types of cargo (href="#bib31" rid="bib31" class=" bibr popnode">Khaminets et al., 2016). Receptors interact with the autophagic machinery via LC3 and GABARAP-interacting regions that bridge autophagosomal membranes with targeted cargo, and such a simple bi-valent interaction could, in principle, enable engulfment (href="#bib6" rid="bib6" class=" bibr popnode">Birgisdottir et al., 2013). However, the autophagic machinery must also be involved in this process since it is responsible for generating lipidated LC3 and GABARAP residing on autophagosomal membranes. The current work aims to identify the dynamics and hierarchical coordination between the autophagic machinery and the selective autophagy receptors.The pathway of mitophagy has been extensively studied since it was first described (href="#bib38" rid="bib38" class=" bibr popnode">Lemasters, 2005). The “eat me” signals on damaged mitochondria initiating this process (href="#bib56" rid="bib56" class=" bibr popnode">Randow and Youle, 2014) can be divided into ubiquitin-dependent and ubiquitin-independent (href="#bib31" rid="bib31" class=" bibr popnode">Khaminets et al., 2016, href="#bib79" rid="bib79" class=" bibr popnode">Yamano et al., 2016). The former rely on ubiquitination of mitochondrial outer membrane proteins in response to damage that is then recognized by mitophagy receptors for recruitment of the LC3 and GABARAP proteins (href="#bib11" rid="bib11" class=" bibr popnode">Dikic, 2017, href="#bib35" rid="bib35" class=" bibr popnode">Kwon and Ciechanover, 2017). A paradigm is the mitophagy pathway regulated by the PINK1 and Parkin proteins (href="#bib49" rid="bib49" class=" bibr popnode">Narendra et al., 2008, href="#bib51" rid="bib51" class=" bibr popnode">Nguyen et al., 2016) where several receptors such as optineurin, NDP-52, Tax1BP1, and p62 translocate to damaged mitochondria (href="#bib37" rid="bib37" class=" bibr popnode">Lazarou et al., 2015). Mitophagy “eat me” signals independent of ubiquitination rely on specific mitochondrial proteins acting as mitophagy receptors (href="#bib31" rid="bib31" class=" bibr popnode">Khaminets et al., 2016, href="#bib58" rid="bib58" class=" bibr popnode">Roberts et al., 2016).Although mitophagy plays an essential role for mitochondrial homeostasis in vivo, the exact signals that trigger it at the organismal level are still relatively obscure (href="#bib74" rid="bib74" class=" bibr popnode">Whitworth and Pallanck, 2017, href="#bib59" rid="bib59" class=" bibr popnode">Rodger et al., 2018). In contrast, at least 14 different pharmacological agents induce mitophagy in tissue culture cells (href="#bib17" rid="bib17" class=" bibr popnode">Georgakopoulos et al., 2017). Taking advantage of our experimental models previously used to follow the dynamics of non-selective autophagy in mammalian cells, we have now examined the dynamics of mitophagy including the origin of the membrane used for mitophagy and the coordination between autophagy and mitophagy machineries during the engulfment step.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介自噬是饥饿期间养分供应的保守途径,分类为非选择性自噬,或用于降解致病性或已损坏的细胞内大型结构的分类,称为选择性自噬(,,)。在这两种途径中,在胞质溶胶中都会形成一种称为自噬体的新型双膜细胞器,然后吞噬其货物,最终将其运送至溶酶体并降解(,)。对于非选择性自噬,货物为总胞质,其在溶酶体中的降解会产生饥饿期间必需的营养素(,)。相比之下,选择性消除自噬的目的是特异性消除大的膜结构-损坏的线粒体,内质网(ER)片段或细菌病原体-构成必不可少的质量控制系统(,,,)。尽管自噬体膜的确切起源仍是一个争论的话题,但现在人们对饥饿的理解已广为人知(,)。对于自称为ω的ER的富含PI3P的区域内产生的自噬体,该途径始于蛋白激酶复合物mTORC1的失活以及由蛋白激酶ULK1(或其同系物)组成的自噬特异性ULK蛋白激酶复合物的伴随激活。 ULK2)和适配器FIP200,ATG13和ATG101(,)。活化的ULK复合物易位到以ATG9囊泡标记的ER的肾小管小管区域,这些位点吸引了称为VPS34复合物I的脂质激酶复合物,该复合物产生PI3P并形成ω体(href =“#bib71” rid =“ bib71” class = “ bibr popnode”> Walker等,2008 ,href="#bib30" rid="bib30" class=" bibr popnode"> Karanasios等,2016 )。卵泡膜内的PI3P吸引了WIPI蛋白家族的成员,这些蛋白又与ATG16蛋白结合并介导磷脂酰乙醇胺对LC3和GABARAP蛋白的共价修饰,这是自噬体形成的重要要求(href = “#bib76” rid =“ bib76” class =“ bibr popnode”>威尔逊等人,2014 ,href="#bib85" rid="bib85" class=" bibr popnode">于等。,2018 )。选择性自噬过程需要一组蛋白质将目标货物连接至自噬机器,并在货物上发出信号以将其标记为螯合(href =“#bib25” rid =“ bib25“ class =” bibr popnode“> Johansen和Lamark,2011 ,href="#bib60" rid="bib60" class=" bibr popnode"> Rogov等人,2014 ) 。选择性自噬受体负责将货物与形成的自噬体桥接。在酵母中,它们包括用于线粒体自噬的Atg32(有丝分裂,href="#bib54" rid="bib54" class=" bibr popnode">冈本等人,2009 ,href =“#bib27 “ rid =” bib27“ class =” bibr popnode“> Kanki等人,2009 ),用于过氧化物酶体自噬的Atg36和Atg30(pexophagy,href =”#bib47“ rid =” bib47“ class = “ bibr popnode”> Motley等,2012 ,href="#bib50" rid="bib50" class=" bibr popnode"> Nazarko等,2014 ),Atg39和内质网膜自噬的Atg40(href="#bib44" rid="bib44" class=" bibr popnode"> Mochida et al。,2015 ),以及Atg19 / Atg34用于Cvt途径(href =“#bib63” rid =“ bib63” class =“ bibr popnode”>斯科特(Scott)等人,2001 ,href="#bib66" rid="bib66" class=" bibr popnode">铃木等,2010 ,href="#bib73" rid="bib73" class=" bibr popnode">渡边等,2010 )。哺乳动物和许多种类的货物都存在同等和同源的蛋白质(href="#bib31" rid="bib31" class=" bibr popnode"> Khaminets et al。,2016 )。受体通过将自噬体膜与目标货物桥接的LC3和GABARAP相互作用区域与自噬机制相互作用,并且原则上,这种简单的二价相互作用可以吞噬(href =“#bib6” rid =“ bib6” class =“ bibr popnode”> Birgisdottir等人,2013 )。但是,自噬机制也必须参与此过程,因为它负责产生自噬体膜上的脂化LC3和GABARAP。当前的工作旨在确定自噬机制与选择性自噬受体之间的动力学和等级协调。自从首次描述以来,自噬的途径已被广泛研究(href =“#bib38” rid =“ bib38” class = “ bibr popnode”> Lemasters,2005 )。 “吃我”信号表明线粒体受损,从而启动了此过程(href="#bib56" rid="bib56" class=" bibr popnode"> Randow和Youle,2014 )可分为泛素依赖性和泛素依赖性(href="#bib31" rid="bib31" class=" bibr popnode"> Khaminets等,2016 , href="#bib79" rid="bib79" class=" bibr popnode">山野等人,2016 )。前者依靠线粒体外膜蛋白的泛素化来响应损伤,然后被线粒体受体识别以募集LC3和GABARAP蛋白(href="#bib11" rid="bib11" class=" bibr popnode"> Dikic,2017 ,href="#bib35" rid="bib35" class=" bibr popnode"> Kwon and Ciechanover,2017 )。范例是由PINK1和Parkin蛋白调节的线粒体途径(href="#bib49" rid="bib49" class=" bibr popnode"> Narendra等,2008 ,href =“ #bib51“ rid =” bib51“ class =” bibr popnode“> Nguyen等人,2016 ),其中,诸如optineurin,NDP-52,Tax1BP1和p62等几种受体易位至受损的线粒体(href = “#bib37” rid =“ bib37” class =“ bibr popnode”>拉扎鲁等人,2015 )。线粒体“吞噬我”信号独立于泛素化,依赖于特定的线粒体蛋白质作为线粒体受体(href="#bib31" rid="bib31" class=" bibr popnode"> Khaminets等人,2016 , href="#bib58" rid="bib58" class=" bibr popnode"> Roberts等人,2016 )。尽管线粒体对于体内线粒体体内稳态起着至关重要的作用,但触发线粒体稳态的确切信号在机体水平上仍然相对模糊(href="#bib74" rid="bib74" class=" bibr popnode">惠特沃斯和帕兰克,2017 ,href =“#bib59” rid =“ bib59“ class =” bibr popnode“> Rodger等人,2018 )。相反,至少有14种不同的药理剂在组织培养细胞中诱导线粒体吞噬(href="#bib17" rid="bib17" class=" bibr popnode"> Georgakopoulos et al。,2017 )。利用以前用于跟踪哺乳动物细胞中非选择性自噬动力学的实验模型,我们现在研究了自噬的动力学,包括用于自噬的膜的起源以及吞噬步骤中自噬与自噬机械之间的协调作用。 。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号