首页> 美国卫生研究院文献>Ecology and Evolution >Non-serotinous woody plants behave as aerial seed bank species when a late-summer wildfire coincides with a mast year
【2h】

Non-serotinous woody plants behave as aerial seed bank species when a late-summer wildfire coincides with a mast year

机译:当夏末的野火与肥大年相吻合时非含色木本植物表现为空中种子库物种。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract class="enumerated" style="list-style-type:decimal">Trees which lack obvious fire-adaptive traits such as serotinous seed-bearing structures or vegetative resprouting are assumed to be at a dramatic disadvantage in recolonization via sexual recruitment after fire, because seed dispersal is invariably quite constrained. We propose an alternative strategy in masting tree species with woody cones or cone-like structures: that the large clusters of woody tissue in a mast year will sufficiently impede heat transfer that a small fraction of seeds can survive the flaming front passage; in a mast year, this small fraction would be a very large absolute number.In Kootenay National Park in British Columbia, we examined regeneration by Engelmann spruce (Picea engelmannii), a non-serotinous conifer, after two fires, both of which coincided with mast years. Coupling models of seed survivorship within cones and seed maturation schedule to a spatially realistic recruitment model, we show that (1) the spatial pattern of seedlings on a 630 m transect from the forest edge into the burn was best explained if there was in situ seed dissemination by burnt trees; (2) in areas several hundred meters from any living trees, recruitment density was well correlated with local prefire cone density; and (3) spruce was responding exactly like its serotinous codominant, lodgepole pine (Pinus contorta).We conclude that non-serotinous species can indeed behave like aerial seed bank species in mast years if the fire takes place late in the seed maturation period. Using the example of the circumpolar boreal forest, while the joint probability of a mast year and a late-season fire will make this type of event rare (we estimate P = 0.1), nonetheless, it would permit a species lacking obvious fire-adapted traits to occasionally establish a widespread and abundant cohort on a large part of the landscape. class="kwd-title">Keywords: Adaptation, Engelmann spruce, fire, mass seeding, masting, regeneration, seed viability, serotiny class="head no_bottom_margin" id="__sec2title">IntroductionWoody plants in many parts of the world cope with a disturbance regime dominated by large, stand-replacing fires (e.g., Johnson ; Veblen et al. ; Peet ). Indeed, these fires are so large that, given dispersal constraints, species which must recolonize from the edge are at a tremendous disadvantage in the early recruitment phase (Greene and Johnson ). There are three fire-adaptive traits that permit in situ establishment and thus allow a species to circumvent this dispersal constraint (Keeley et al. ). The first is asexual reproduction. This is particularly advantageous, but much less common, when the perennating buds are located on widespread roots (e.g., in aspen, Populus tremuloides). More typically, angiosperms reliably sprout from the root collar (few gymnosperm species can do this), a trait often enhanced in fire-adapted species by the presence of lignotubers, storage organs at the root–shoot junction which contain numerous dormant buds (James ). The second trait is an aerial seed bank. Persistent ovulate cones or inflorescences ensure that a large proportion of seeds are on hand to disperse from burnt trees or shrubs onto the receptive seedbeds created by combustion of organic soil layers (Greene et al. ). Aerial seed banks are common among plants in many fire-prone areas, including several Pinus species in the Northern Hemisphere and Banksia species in Australia (Lamont et al. ). The third trait is a soil seed bank. Soil seed banks that can persist through fire, while common in Mediterranean and desert ecosystems, are, however, quite rare among species in the circumboreal forest where smoldering combustion of the deep organic layer typically kills all seeds (Johnson and Fryer ).How do species lacking these three traits persist in fire-prone environments? They must seed in from the fire edge or from residual stands within the burn; empirically, we find very few seedlings at distances greater than about 100 m from surviving seed sources (Zasada ; Greene and Johnson ). It remains a mystery how species without a strong asexual response or either aerial or soil seed banks can persist in a landscape dominated by stand-replacing fires (Greene and Johnson ). We hypothesize that under certain conditions, a species can respond to stand-replacing fire as if it possessed an aerial seed bank, dispersing viable seeds from dead or dying trees within the interior of the burn. Four conditions must be met for this hypothesis to be correct. First, seeds must be contained within structures that provide resistance to heat transfer from incident heat flux and can sufficiently insulate the seeds against lethal temperatures. Structures capable of insulating seeds from fire vary by species according to their thermophysical properties and can in some cases be single ovulate cones or fruits (Mercer et al. ; Michaletz et al. ) or, in other cases, dense clusters of many cones or fruits (Judd and Ashton ). Second, fire must occur when seeds are either mature or sufficiently advanced that they can finish maturation even when the tree is dead. Third, the fire must not occur so late in the year that the cones or fruits have begun to open; otherwise, the cones or fruits and any enclosed seeds will combust as fine fuels. For example, Michaletz et al. () concluded that the window between sufficient maturation and cone opening in the North American boreal species white spruce (Picea glauca) was, empirically, about 600 to 1180 degree days.The fourth requirement is that the species must be enjoying a mast year at the time of the fire (Koenig and Knops href="#b27" rid="b27" class=" bibr popnode">1998; Greene and Johnson href="#b13" rid="b13" class=" bibr popnode">2004). Masting is a condition in which individual plants of a species synchronously produce unusually high numbers of fruit or seeds over a wide region (Silvertown href="#b40" rid="b40" class=" bibr popnode">1980; Kelly href="#b26" rid="b26" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_422576285">1994). High production in one season (a mast year) is typically followed by several years of low seed production. We consider a mast year an additional requirement because high seed mortality will certainly occur during passage of the flaming front, and there will be therefore little in situ recruitment in a non-mast year. The coincidence of a mast year and a fire will have an augmenting effect from the living plants at the edge: The good seedbeds created by smoldering combustion are ephemeral, lasting only a few years before leaf accrual renders them poor substrates for small-seeded species (Greene and Johnson href="#b12" rid="b12" class=" bibr popnode">2000; Charron and Greene href="#b5" rid="b5" class=" bibr popnode">2002; Peters et al. href="#b39" rid="b39" class=" bibr popnode">2005), and thus, the edge trees would have a much stronger input (albeit still distance limited) in a mast year.Our objective is to formally model and test the hypothesis that a species can perform as if it had an aerial seed bank if a fire takes place late in the seed maturation period during a mast year. We focus on the conifer, Engelmann spruce (Picea engelmannii Parry ex Engelm.), in the southern Canadian Rockies following two late-summer fires. This is a masting species, with very little seed produced in inter-mast years (Fowler and Roche href="#b9" rid="b9" class=" bibr popnode">1976; Greene and Johnson href="#b13" rid="b13" class=" bibr popnode">2004). Both fires were selected for this study because they coincided with mast years. As Engelmann spruce is extremely closely related to, and hybridizes extensively with, white spruce (Daubenmire href="#b6" rid="b6" class=" bibr popnode">1974; Bouillé et al. href="#b3" rid="b3" class=" bibr popnode">2011), we can posit the same degree day window for seed maturation mentioned above. Likewise, reproductive potential and interannual variation in crop sizes are comparable between Engelmann and white spruce, with both species predictably showing a decrease in seed production with elevation (Owens and Molder href="#b35" rid="b35" class=" bibr popnode">1984; Greene and Johnson href="#b13" rid="b13" class=" bibr popnode">2004). Unpublished data collected by Greene and Pounden in consecutive years (2005 to 2013) show that the cone crops of the two species are indeed highly positively correlated.We will also compare recruitment of Engelmann spruce with the aerial seed bank species, lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.). We develop a general mechanistic model of sexual recruitment applicable to any species with or without aerial seed banks, or with a combination of the two responses. Our model makes two predictions for these late-summer fires. First, unlike the steep negative exponential decline in seeds or seedlings of wind-dispersed species from burn edges due to the dispersal constraint (Greene and Johnson href="#b10" rid="b10" class=" bibr popnode">1996) expected for species lacking reliable asexual reproduction or aerial seed banks, the decline in recruit density in a fire/mast year to a distance of about 200 m from the fire edge should be strongly moderated by input from dead spruce within the burn area, and beyond 200 m should be nonzero, yet quite flat, as effectively all seeds, as with lodgepole pine, are by that distance derived locally from dead spruce. Second, at distances greater than 200 m from an unburned edge, we expect spruce seedling density to be positively correlated with local burnt ovulate cone density (as it would be with lodgepole pine).
机译:Abstract class =“ enumerated” style =“ list-style-type:decimal”> <!-list-behavior =枚举前缀-word = mark-type = decimal max-label-size = 0->
  • 树木缺乏明显的适应火性状,例如,含血清的种子结构或无性繁殖,在火后通过有性募集而重新定殖方面具有显着的劣势,因为种子的扩散总是受到很大的限制。我们提出了一种用木本球果或类圆锥形结构树种消灭树木的替代策略:在木本年,大的木本组织簇将充分阻碍热传递,使一小部分种子可以从燃烧的前通道中存活下来;在肥大的一年中,这小部分绝对值会很大。大火,这两者都符合桅杆时代。视锥细胞内的种子存活率模型和种子成熟时间表与空间逼真的募集模型的耦合模型,我们表明(1)如果存在原位种子,则最好解释从森林边缘到烧伤的630 m横断面上的幼苗空间格局通过烧毁的树木传播; (2)在距离任何活树几百米的区域,募集密度与局部预火锥密度紧密相关; (3)云杉的反应完全像它的血清素共性,寄主松(Pinus contorta)。 我们得出结论,如果发生火灾,非血清素的确可以在肥大年中表现得像空中种子库物种。在种子成熟期的后期。以圆极寒带森林为例,尽管发生桅杆年份和后期火灾的联合概率将使此类事件很少见(我们估计P = 0.1),但这将允许缺乏明显火适应性的物种特质,偶尔在大部分景观上建立起广泛而丰富的队列。 class =“ kwd-title”>关键字:适应性,恩格尔曼云杉,火,大规模播种,肥大,再生,种子活力,锯齿状 class =“ head no_bottom_margin” id =“ __ sec2title”>简介世界上许多地方的木本植物可以应对由大面积的林木取代的火势所造成的干扰(例如Johnson(约翰逊; Veblen等人; Peet)。确实,这些火灾是如此之大,以至于在扩散限制下,必须从边缘重新定殖的物种在早期征募阶段处于极大的劣势(Greene和Johnson)。有3种具有火适应性的特性可以在原地建立,从而允许物种规避这种扩散限制(Keeley等)。首先是无性繁殖。当多年生芽位于广泛的根部时(例如,在白杨中,tremuloides杨属),这是特别有利的,但不太常见。更典型的是,被子植物从根领可靠地发芽(很少裸子植物可以做到这一点),这种特性通常在适应火的物种中由于木质素块的存在而增强,木质素块根在根茎交界处含有大量休眠芽(詹姆斯) 。第二个特征是空中种子库。持久的排卵球果或花序确保了大部分种子从燃烧的树木或灌木中散布到有机土壤层燃烧所产生的可接受的苗床上(Greene等人)。空中种子库在许多易发火灾地区的植物中很常见,包括北半球的几种松属物种和澳大利亚的班克西亚种(Lamont et al。)。第三个特征是土壤种子库。在地中海和沙漠生态系统中很常见的可通过火持续存在的土壤种子库在这种圆滑的森林中非常罕见,在该森林中,深有机层的闷烧通常会杀死所有种子(Johnson和Fryer)。缺少这三个特征在容易着火的环境中仍然存在吗?它们必须从火边或燃烧中的残留林中播种;从经验上讲,我们发现与存活的种子源(Zasada; Greene和Johnson)距离大于约100 m的幼苗很少。没有强烈无性反应的物种,无论是空中种子还是土壤种子库的物种如何能够在以林木替代林火为主的景观中生存(Greene和Johnson),仍然是一个谜。我们假设,在某些条件下,一个物种可以对替换林的火做出反应,就好像它拥有空中种子库一样,将枯死或垂死树木中的活种子散布在燃烧内部。为了使该假设正确,必须满足四个条件。第一种子必须包含在能够抵抗入射热通量传热的结构中,并且可以使种子充分地抵抗致死温度。能够将种子绝缘于火的结构根据其热物理性质而不同,并且在某些情况下可以是单个排卵球果或果实(Mercer等人; Michaletz等人),或者在其他情况下可以是许多球果或果实的密集簇(贾德和阿什顿)。其次,当种子成熟或足够成熟以至于即使树已经死了,种子也可以完成成熟,必须着火。第三,大火一定不能在一年中的晚些时候发生,以至于视锥或果实开始开裂。否则,视锥或果实以及任何封闭的种子将作为细燃料燃烧。例如Michaletz等。 ()得出结论,根据经验,北美北方物种白云杉(Picea glauca)的成熟度和锥孔之间的窗口为600至1180度日。第四项要求是该物种必须在火灾发生的时间(Koenig和Knops href="#b27" rid="b27" class=" bibr popnode"> 1998 ;格林和约翰逊href =“#b13” rid =“ b13” class =“ bibr popnode”> 2004 )。消光是一种情况,其中某个物种的单个植物在广阔的区域同步产生异常多的水果或种子(Silvertown href="#b40" rid="b40" class=" bibr popnode"> 1980 ; Kelly href="#b26" rid="b26" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_422576285"> 1994 )。通常在一个季节(肥大年)中高产,随后几年是低种子产量。我们认为肥大年是额外的要求,因为肯定会在燃烧的锋面通过期间发生高种子死亡率,因此在非肥大年中很少会就地招募。肥大年和火的巧合将对边缘的活植物产生促进作用:闷燃燃烧产生的良好苗床是短暂的,仅持续数年,直到叶片积聚才使它们成为小种子物种的不良基质( Greene和Johnson href="#b12" rid="b12" class=" bibr popnode"> 2000 ; Charron和Greene href =“#b5” rid =“ b5” class =“ bibr popnode “> 2002 ; Peters等人href="#b39" rid="b39" class=" bibr popnode"> 2005 ),因此边缘树将具有更强大的功能我们的目标是正式建模和测试以下假设:如果在桅杆年份的种子成熟期后期发生火灾,则该物种可以表现得好像具有空中种子库。在两次夏末大火之后,我们重点研究了加拿大南部洛矶山脉的针叶树Engelmann云杉(Picea engelmannii Parry ex Engelm。)。这是一种成熟的物种,在母系间数年间很少产生种子(Fowler和Roche href="#b9" rid="b9" class=" bibr popnode"> 1976 ; Greene和Johnson < a href =“#b13” rid =“ b13” class =“ bibr popnode”> 2004 )。选择这两种火灾是因为它们与肥大年相吻合。由于Engelmann云杉与白色云杉极为相似,并且与之广泛杂交(Daubenmire href="#b6" rid="b6" class=" bibr popnode"> 1974 ;Bouillé等。href =“#b3” rid =“ b3” class =“ bibr popnode”> 2011 ),我们可以为上述种子成熟度设置相同的学位日窗口。同样,恩格尔曼和白云杉之间的繁殖潜力和年际变化在作物大小上是可比的,这两个物种可预测地显示出种子产量随海拔升高而降低(欧文斯和摩尔德href =“#b35” rid =“ b35” class =“ bibr popnode“> 1984 ;格林和约翰逊href="#b13" rid="b13" class=" bibr popnode"> 2004 )。 Greene和Pounden连续几年(2005年至2013年)收集的未公开数据表明,这两个物种的锥果作物的确确实具有高度正相关性。我们还将恩格尔曼云杉的招募与空中种子库物种,寄主松(Pinus contorta)进行比较。 Dougl。,前Loud.var.latifolia Engelm。)。我们开发了一种通用的性征募集机制模型,该模型适用于具有或不具有空中种子库,或结合了两种响应的任何物种。我们的模型对这些夏末大火做出了两个预测。首先,与由于扩散限制而导致的风散种的种子或幼苗从燃烧边缘急剧下降所引起的指数下降不同(Greene and Johnson href="#b10" rid="b10" class=" bibr popnode"> 1996 )对于缺乏可靠的无性繁殖或空中种子库的物种而言,应通过火灾期间内死角云杉的投入来强烈减缓火/过去一年到火边缘约200 m处的新兵密度下降。燃烧面积超过200 m时应为非零值,但应相当平坦,因为实际上所有种子与黑松一样,是从死角云杉局部导出的。其次,在距离未燃烧边缘大于200 m的距离处,我们预计云杉幼苗密度与局部燃烧的排卵锥密度正相关(与黑松相同)。
  • 著录项

    相似文献

    • 外文文献
    • 专利
    代理获取

    客服邮箱:kefu@zhangqiaokeyan.com

    京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
    • 客服微信

    • 服务号