首页> 美国卫生研究院文献>International Journal of Molecular Sciences >Non-Linear Quantitative Structure–Activity Relationships Modelling Mechanistic Study and In-Silico Design of Flavonoids as Potent Antioxidants
【2h】

Non-Linear Quantitative Structure–Activity Relationships Modelling Mechanistic Study and In-Silico Design of Flavonoids as Potent Antioxidants

机译:类黄酮作为有效抗氧化剂的非线性定量构效关系建模机理研究和硅胶设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this work, we developed quantitative structure–activity relationships (QSAR) models for prediction of oxygen radical absorbance capacity (ORAC) of flavonoids. Both linear (partial least squares—PLS) and non-linear models (artificial neural networks—ANNs) were built using parameters of two well-established antioxidant activity mechanisms, namely, the hydrogen atom transfer (HAT) mechanism defined with the minimum bond dissociation enthalpy, and the sequential proton-loss electron transfer (SPLET) mechanism defined with proton affinity and electron transfer enthalpy. Due to pronounced solvent effects within the ORAC assay, the hydration energy was also considered. The four-parameter PLS-QSAR model yielded relatively high root mean square errors (RMSECV = 0.783, RMSEE = 0.668, RMSEP = 0.900). Conversely, the ANN-QSAR model yielded considerably lower errors (RMSEE = 0.180 ± 0.059, RMSEP1 = 0.164 ± 0.128, and RMSEP2 = 0.151 ± 0.114) due to the inherent non-linear relationships between molecular structures of flavonoids and ORAC values. Five-fold cross-validation was found to be unsuitable for the internal validation of the ANN-QSAR model with a high RMSECV of 0.999 ± 0.253; which is due to limited sample size where resampling with replacement is a considerably better alternative. Chemical domains of applicability were defined for both models confirming their reliability and robustness. Based on the PLS coefficients and partial derivatives, both models were interpreted in terms of the HAT and SPLET mechanisms. Theoretical computations based on density functional theory at ωb97XD/6-311++G(d,p) level of theory were also carried out to further shed light on the plausible mechanism of anti-peroxy radical activity. Calculated energetics for simplified models (genistein and quercetin) with peroxyl radical derived from 2,2′-azobis (2-amidino-propane) dihydrochloride suggested that both SPLET and single electron transfer followed by proton loss (SETPL) mechanisms are competitive and more favorable than HAT in aqueous medium. The finding is in good accord with the ANN-based QSAR modelling results. Finally, the strongly predictive ANN-QSAR model was used to predict antioxidant activities for a series of 115 flavonoids designed combinatorially with flavone as a template. Structural trends were analyzed, and general guidelines for synthesis of new flavonoid derivatives with potentially potent antioxidant activities were given.
机译:在这项工作中,我们开发了定量结构-活性关系(QSAR)模型,用于预测类黄酮的氧自由基吸收能力(ORAC)。线性(偏最小二乘-PLS)模型和非线性模型(人工神经网络-ANN)均使用两个公认的抗氧化活性机制的参数建立,即用最小键解离定义的氢原子转移(HAT)机制焓,以及用质子亲和力和电子转移焓定义的顺序质子损失电子转移(SPLET)机制。由于ORAC分析中明显的溶剂作用,因此还考虑了水合能。四参数PLS-QSAR模型产生了较高的均方根误差(RMSECV = 0.783,RMSEE = 0.668,RMSEP = 0.900)。相反,由于类黄酮的分子结构与ORAC值之间存在固有的非线性关系,因此ANN-QSAR模型产生的误差较低(RMSEE = 0.180±0.059,RMSEP1 = 0.164±0.128,RMSEP2 = 0.151±0.114)。发现五重交叉验证不适用于具有0.999±0.253的高RMSECV的ANN-QSAR模型的内部验证。这是由于样本量有限,在这种情况下,通过替换进行重采样是一个更好的选择。定义了两个模型的适用性化学域,从而确认了它们的可靠性和鲁棒性。基于PLS系数和偏导数,两个模型都根据HAT和SPLET机制进行了解释。还基于密度泛函理论在ωb97XD/ 6-311 ++ G(d,p)层次上进行了理论计算,以进一步阐明抗过氧自由基活性的可能机理。简化模型(染料木黄酮和槲皮素)的过高自由基(衍生自2,2'-偶氮二(2-ami基丙烷)二盐酸盐)的计算能量表明,SPLET和单电子转移以及质子损失(SETPL)机理都具有竞争性,并且更有利比HAT在水性介质中的要高。这一发现与基于ANN的QSAR建模结果非常吻合。最后,将强预测性ANN-QSAR模型用于预测以黄酮为模板组合设计的一系列115种类黄酮的抗氧化活性。分析了结构趋势,并给出了合成具有潜在强效抗氧化剂活性的新类黄酮衍生物的一般指南。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号