首页> 美国卫生研究院文献>Movement Ecology >Feasibility of sun and magnetic compass mechanisms in avian long-distance migration
【2h】

Feasibility of sun and magnetic compass mechanisms in avian long-distance migration

机译:太阳和磁罗盘机制在鸟类长距离迁移中的可行性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Birds use different compass mechanisms based on celestial (stars, sun, skylight polarization pattern) and geomagnetic cues for orientation. Yet, much remains to be understood how birds actually use these compass mechanisms on their long-distance migratory journeys. Here, we assess in more detail the consequences of using different sun and magnetic compass mechanisms for the resulting bird migration routes during both autumn and spring migration. First, we calculated predicted flight routes to determine which of the compasses mechanisms lead to realistic and feasible migration routes starting at different latitudes during autumn and spring migration. We then compared the adaptive values of the different compass mechanisms by calculating distance ratios in relation to the shortest possible trajectory for three populations of nocturnal passerine migrants: northern wheatear Oenanthe oenanthe, pied flycatcher Ficedula hypoleuca, and willow warbler Phylloscopus trochilus. Finally, we compared the predicted trajectories for different compass strategies with observed routes based on recent light-level geolocation tracking results for five individuals of northern wheatears migrating between Alaska and tropical Africa. We conclude that the feasibility of different compass routes varies greatly with latitude, migratory direction, migration season, and geographic location. Routes following a single compass course throughout the migratory journey are feasible for many bird populations, but the underlying compass mechanisms likely differ between populations. In many cases, however, the birds likely have to reorient once to a few times along the migration route and/or use map information to successfully reach their migratory destination.Electronic supplementary materialThe online version of this article (10.1186/s40462-018-0126-4) contains supplementary material, which is available to authorized users.
机译:鸟类根据天体(星,太阳,天光的偏振模式)和地磁线索使用不同的罗盘机制进行定向。然而,还有很多事情有待理解,鸟类如何在远距离迁移中真正使用这些罗盘机制。在这里,我们将更详细地评估在秋季和春季迁徙期间使用不同的太阳和磁罗盘机制产生的鸟类迁徙路线的后果。首先,我们计算了预测的飞行路线,以确定哪些罗盘机制导致了在秋季和春季迁徙期间从不同纬度开始的现实可行的迁徙路线。然后,我们通过计算三个夜行性雀形目移民的距离比率与最短轨迹的关系,比较了不同罗盘机制的适应性值:北麦翁油en(Oenanthe oenanthe),pie蝇捕蝇草(Ficedula hypoleuca)和柳莺(Phylloscopus trochilus)。最后,我们基于五种在阿拉斯加和热带非洲之间迁移的北部麦穗小麦的近期光水平地理位置跟踪结果,将不同指南针策略的预测轨迹与观测路线进行了比较。我们得出结论,不同的指南针路线的可行性随纬度,迁移方向,迁徙季节和地理位置的不同而有很大差异。对于许多鸟类来说,在整个迁徙过程中遵循单一罗盘路线的路线都是可行的,但是潜在的罗盘机制在不同的种群之间可能有所不同。但是,在很多情况下,鸟类可能不得不沿着迁移路线重新定向一次或几次,并且/或者使用地图信息才能成功到达其候鸟目的地。电子补充材料本文的在线版本(10.1186 / s40462-018-0126 -4)包含补充材料,授权用户可以使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号