首页> 美国卫生研究院文献>The ISME Journal >Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing
【2h】

Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing

机译:细菌对菌落的脱木质素和木质纤维素降解的贡献采用宏基因组学和定量稳定同位素探测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Delignification, or lignin-modification, facilitates the decomposition of lignocellulose in woody plant biomass. The extant diversity of lignin-degrading bacteria and fungi is underestimated by culture-dependent methods, limiting our understanding of the functional and ecological traits of decomposers populations. Here, we describe the use of stable isotope probing (SIP) coupled with amplicon and shotgun metagenomics to identify and characterize the functional attributes of lignin, cellulose and hemicellulose-degrading fungi and bacteria in coniferous forest soils from across North America. We tested the extent to which catabolic genes partitioned among different decomposer taxa; the relative roles of bacteria and fungi, and whether taxa or catabolic genes correlated with variation in lignocellulolytic activity, measured as the total assimilation of 13C-label into DNA and phospholipid fatty acids. We found high overall bacterial degradation of our model lignin substrate, particularly by gram-negative bacteria (Comamonadaceae and Caulobacteraceae), while fungi were more prominent in cellulose-degradation. Very few taxa incorporated 13C-label from more than one lignocellulosic polymer, suggesting specialization among decomposers. Collectively, members of Caulobacteraceae could degrade all three lignocellulosic polymers, providing new evidence for their importance in lignocellulose degradation. Variation in lignin-degrading activity was better explained by microbial community properties, such as catabolic gene content and community structure, than cellulose-degrading activity. SIP significantly improved shotgun metagenome assembly resulting in the recovery of several high-quality draft metagenome-assembled genomes and over 7500 contigs containing unique clusters of carbohydrate-active genes. These results improve understanding of which organisms, conditions and corresponding functional genes contribute to lignocellulose decomposition.
机译:脱木质素或木质素修饰可促进木质植物生物量中木质纤维素的分解。依赖于文化的方法低估了木质素降解细菌和真菌的多样性,这限制了我们对分解者群体的功能和生态特性的了解。在这里,我们描述了稳定同位素探测(SIP)与扩增子和shot弹枪宏基因组学的结合使用,以鉴定和表征北美针叶林土壤中木质素,纤维素和半纤维素降解真菌和细菌的功能属性。我们测试了分解代谢基因在不同分解者分类群之间分配的程度。细菌和真菌的相对作用,以及分类群或分解代谢基因是否与木质纤维素分解活性的变化相关,以 13 C标签与DNA和磷脂脂肪酸的总同化率来衡量。我们发现我们的模型木质素底物具有较高的总体细菌降解能力,尤其是革兰氏阴性细菌(Comamonadaceae和Caulobacteraceae),而真菌在纤维素降解中更为突出。很少有分类单元从一种以上的木质纤维素聚合物中掺入 13 C标签,这表明分解剂之间具有专门性。集体,杆状细菌科成员可以降解所有三种木质纤维素聚合物,为它们在木质纤维素降解中的重要性提供了新的证据。木质素降解活性的变化比微生物降解活性更好地解释了微生物群落特性,例如分解代谢基因的含量和群落结构。 SIP显着改善了gun弹枪元基因组装配,从而恢复了几个高质量的元基因组装配图稿,并回收了超过7500个含有独特的糖活性基因簇的重叠群。这些结果增进了对哪些生物,条件和相应的功能基因有助于木质纤维素分解的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号