首页> 美国卫生研究院文献>The ISME Journal >Identification of syntrophic acetate-oxidizing bacteria in anaerobic digesters by combined protein-based stable isotope probing and metagenomics
【2h】

Identification of syntrophic acetate-oxidizing bacteria in anaerobic digesters by combined protein-based stable isotope probing and metagenomics

机译:基于蛋白质的稳定同位素探测和宏基因组学相结合鉴定厌氧消化池中的乙酸增生氧化菌

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Inhibition of anaerobic digestion through accumulation of volatile fatty acids occasionally occurs as the result of unbalanced growth between acidogenic bacteria and methanogens. A fast recovery is a prerequisite for establishing an economical production of biogas. However, very little is known about the microorganisms facilitating this recovery. In this study, we investigated the organisms involved by a novel approach of mapping protein-stable isotope probing (protein-SIP) onto a binned metagenome. Under simulation of acetate accumulation conditions, formations of 13C-labeled CO2 and CH4 were detected immediately following incubation with [U-13C]acetate, indicating high turnover rate of acetate. The identified 13C-labeled peptides were mapped onto a binned metagenome for improved identification of the organisms involved. The results revealed that Methanosarcina and Methanoculleus were actively involved in acetate turnover, as were five subspecies of Clostridia. The acetate-consuming organisms affiliating with Clostridia all contained the FTFHS gene for formyltetrahydrofolate synthetase, a key enzyme for reductive acetogenesis, indicating that these organisms are possible syntrophic acetate-oxidizing (SAO) bacteria that can facilitate acetate consumption via SAO, coupled with hydrogenotrophic methanogenesis (SAO-HM). This study represents the first study applying protein-SIP for analysis of complex biogas samples, a promising method for identifying key microorganisms utilizing specific pathways.
机译:由于产酸细菌和产甲烷菌之间的不平衡生长,有时会通过挥发性脂肪酸的积累来抑制厌氧消化。快速恢复是建立经济的沼气生产的前提。然而,关于促进这种恢复的微生物知之甚少。在这项研究中,我们调查了一种通过将蛋白质稳定同位素探测(protein-SIP)映射到装仓的基因组上的新方法所涉及的生物。在模拟乙酸盐积累条件下,与[U- 13 C]乙酸盐孵育后立即检测到 13 C标记的CO2和CH4的形成,表明乙酸盐的高转换率。将已鉴定的 13 C标记的肽定位到装仓的元基因组上,以改善对所涉及生物的鉴定。结果表明,甲烷单胞菌属和甲烷菌属与乙酸梭菌的五个亚种一样都积极参与乙酸盐的转换。与梭状芽孢杆菌有关的消耗乙酸的生物均含有甲酰四氢叶酸合成酶的FTFHS基因,该酶是还原性乙醛生成的关键酶,表明这些生物是可能的吞噬性乙酸-氧化(SAO)细菌,可促进通过SAO消耗乙酸,以及氢营养型甲烷化(SAO-HM)。这项研究代表了第一项应用蛋白质SIP分析复杂沼气样品的研究,这是一种利用特定途径鉴定关键微生物的有前途的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号