首页> 美国卫生研究院文献>The ISME Journal >Microbial dormancy improves development and experimental validation of ecosystem model
【2h】

Microbial dormancy improves development and experimental validation of ecosystem model

机译:微生物休眠改善了生态系统模型的开发和实验验证

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Climate feedbacks from soils can result from environmental change followed by response of plant and microbial communities, and/or associated changes in nutrient cycling. Explicit consideration of microbial life-history traits and functions may be necessary to predict climate feedbacks owing to changes in the physiology and community composition of microbes and their associated effect on carbon cycling. Here we developed the microbial enzyme-mediated decomposition (MEND) model by incorporating microbial dormancy and the ability to track multiple isotopes of carbon. We tested two versions of MEND, that is, MEND with dormancy (MEND) and MEND without dormancy (MEND_wod), against long-term (270 days) carbon decomposition data from laboratory incubations of four soils with isotopically labeled substrates. MEND_wod adequately fitted multiple observations (total C–CO2 and 14C–CO2 respiration, and dissolved organic carbon), but at the cost of significantly underestimating the total microbial biomass. MEND improved estimates of microbial biomass by 20–71% over MEND_wod. We also quantified uncertainties in parameters and model simulations using the Critical Objective Function Index method, which is based on a global stochastic optimization algorithm, as well as model complexity and observational data availability. Together our model extrapolations of the incubation study show that long-term soil incubations with experimental data for multiple carbon pools are conducive to estimate both decomposition and microbial parameters. These efforts should provide essential support to future field- and global-scale simulations, and enable more confident predictions of feedbacks between environmental change and carbon cycling.
机译:来自土壤的气候反馈可能源于环境变化,随后是植物和微生物群落的响应,和/或养分循环的相关变化。由于微生物的生理和群落组成的变化及其对碳循环的相关影响,可能需要明确考虑微生物的生活史特征和功能,以预测气候反馈。在这里,我们通过结合微生物休眠和跟踪碳的多种同位素的能力,开发了微生物酶介导的分解(MEND)模型。我们测试了MEND的两个版本,即具有休眠状态的MEND(MEND)和不具有休眠状态的MEND(MEND_wod),针对四种同位素标记基质的土壤进行实验室培养的长期(270天)碳分解数据。 MEND_wod可以适当地拟合多个观测值(总C–CO2和 14 C–CO2呼吸以及溶解的有机碳),但代价是大大低估了微生物的总生物量。与MEND_wod相比,MEND将微生物生物量的估算值提高了20–71%。我们还使用了基于全局随机优化算法的关键目标函数索引方法,对参数和模型仿真中的不确定性进行了量化,以及模型的复杂性和观测数据的可用性。我们对孵化研究的模型推断共同表明,利用多个碳库的实验数据进行的长期土壤孵化有利于估算分解和微生物参数。这些努力应为未来的现场和全球规模的模拟提供必要的支持,并使对环境变化与碳循环之间的反馈的预测更加自信。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号