首页> 美国卫生研究院文献>The ISME Journal >Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps
【2h】

Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps

机译:脱硫球藻/脱硫球菌进化枝的多种硫酸盐还原菌是海洋渗漏中的关键烷烃降解剂

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biogeochemical and microbiological data indicate that the anaerobic oxidation of non-methane hydrocarbons by sulfate-reducing bacteria (SRB) has an important role in carbon and sulfur cycling at marine seeps. Yet, little is known about the bacterial hydrocarbon degraders active in situ. Here, we provide the link between previous biogeochemical measurements and the cultivation of degraders by direct identification of SRB responsible for butane and dodecane degradation in complex on-site microbiota. Two contrasting seep sediments from Mediterranean Amon mud volcano and Guaymas Basin (Gulf of California) were incubated with 13C-labeled butane or dodecane under sulfate-reducing conditions and analyzed via complementary stable isotope probing (SIP) techniques. Using DNA- and rRNA-SIP, we identified four specialized clades of alkane oxidizers within Desulfobacteraceae to be distinctively active in oxidation of short- and long-chain alkanes. All clades belong to the Desulfosarcina/Desulfococcus (DSS) clade, substantiating the crucial role of these bacteria in anaerobic hydrocarbon degradation at marine seeps. The identification of key enzymes of anaerobic alkane degradation, subsequent β-oxidation and the reverse Wood–Ljungdahl pathway for complete substrate oxidation by protein-SIP further corroborated the importance of the DSS clade and indicated that biochemical pathways, analog to those discovered in the laboratory, are of great relevance for natural settings. The high diversity within identified subclades together with their capability to initiate alkane degradation and growth within days to weeks after substrate amendment suggest an overlooked potential of marine benthic microbiota to react to natural changes in seepage, as well as to massive hydrocarbon input, for example, as encountered during anthropogenic oil spills.
机译:生物地球化学和微生物学数据表明,还原性硫酸盐细菌(SRB)对非甲烷碳氢化合物的厌氧氧化在海水渗漏的碳和硫循环中具有重要作用。然而,关于原位活性的细菌碳氢化合物降解剂知之甚少。在这里,我们通过直接鉴定负责复杂现场微生物群中丁烷和十二烷降解的SRB,提供以前的生物地球化学测量结果与降解菌的培养之间的联系。在还原硫酸盐的条件下,将来自地中海阿蒙泥火山和瓜亚马斯盆地(加利福尼亚湾)的两种形成对比的渗流沉积物与 13 C标记的丁烷或十二烷进行孵育,并通过补充稳定同位素探测(SIP)技术进行分析。使用DNA和rRNA-SIP,我们在脱硫杆菌科中鉴定了四个专门的烷烃氧化剂进化枝,它们在短链和长链烷烃的氧化中具有独特的活性。所有进化枝都属于脱硫球菌/脱硫球菌(DSS)进化枝,证实了这些细菌在海洋渗水中厌氧烃降解中的关键作用。通过蛋白质-SIP鉴定厌氧烷烃降解,随后的β-氧化以及反向的Wood-Ljungdahl途径以完全被底物氧化的关键酶的鉴定,进一步证实了DSS进化枝的重要性,并表明了类似于实验室中发现的生化途径。与自然环境息息相关。例如,确定的子区域内的高度多样性以及它们在底物改良后数天至数周内能够引发烷烃降解和生长的能力,表明海洋底栖生物群对渗流的自然变化以及大量烃输入做出反应的潜力被忽略了,例如,在人为溢油事故中遇到的情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号