首页> 美国卫生研究院文献>iScience >Nontemplating Porous Carbon Material from Polyphosphamide Resin for Supercapacitors
【2h】

Nontemplating Porous Carbon Material from Polyphosphamide Resin for Supercapacitors

机译:超级电容器用聚磷酰胺树脂制成的非模板多孔碳材料

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionWith the depletion of conventional energy resources, green and sustainable energy conversion and storage technologies are attracting more and more attention. Among various energy storage devices, supercapacitors have their advantages of high charge-discharge rate, long cycle life, high energy conversion efficiency, etc. (). According to the energy storage mechanisms, supercapacitors can be categorized into electrical double-layer capacitors (EDLCs) and pseudocapacitors (). EDLCs store energy through ion adsorption-desorption at the electrode-electrolyte interfaces. The typical materials for EDLCs always have high specific surface area (SSA), such as porous carbon (), carbon nanotube (), and graphene (). Pseudocapacitors store energy by reversible faradaic reactions of the electrode materials, such as Ni(OH)2 (), MnO2 (), and V2O5 (). Up to now, EDLCs still hold the dominant market position owing to their low cost and high reliability.Porous carbon materials (PCMs) are widely used as electrode materials in supercapacitors, especially EDLCs, owing to their stable physical and chemical properties, large SSA, controllable pore structure, high electronic conductivity, and low cost (, , , ). The capacitance of PCM-based supercapacitors is mainly determined by the SSA and pore structure of PCMs, providing ion storage interface and facilitating the ion transportation, respectively (, ). Therefore much research has been devoted to optimize the pore structure by preparing ordered and hierarchical (micropores and mesopores) PCMs on the premise of remaining large SSA to enhance the EDLC capacity (, href="#bib15" rid="bib15" class=" bibr popnode">Largeot et al., 2008, href="#bib24" rid="bib24" class=" bibr popnode">Qie et al., 2013, href="#bib34" rid="bib34" class=" bibr popnode">Tran and Kalra, 2013). Although metal-organic frameworks (href="#bib10" rid="bib10" class=" bibr popnode">Hu et al., 2010) and metal carbides (href="#bib3" rid="bib3" class=" bibr popnode">Chmiola et al., 2006b) have been used to prepare pore-controllable PCMs, organic polymers are promising precursors because they can be handily designed and synthesized with specific structures and composition; these features are important to obtain PCMs with the desired pore structure (href="#bib5" rid="bib5" class=" bibr popnode">Dutta et al., 2014, href="#bib41" rid="bib41" class=" bibr popnode">Wei et al., 2013, href="#bib43" rid="bib43" class=" bibr popnode">Xu et al., 2013, href="#bib54" rid="bib54" class=" bibr popnode">Zhong et al., 2012).Polymerization of monomers for preparing organic polymers provides the possibility of tuning the final structures, during which monomers may be restricted to the specific space for in situ polymerization or self-assembly. For instance, Böttger-Hiller et al. used spherical SiO2 particles as hard templates to allow in situ monomer polymerization and prepared hollow carbon spheres with porous shell by carbonization and washing of the templates (href="#bib1" rid="bib1" class=" bibr popnode">Böttger-Hiller et al., 2013). Using surfactants or block copolymers as soft templating can direct the polymerization of monomers, and after drying and carbonization, PCMs can be obtained (href="#bib4" rid="bib4" class=" bibr popnode">Chuenchom et al., 2012). For instance, block copolymers, such as Pluronic F-127 (EO106PO70EO106), are commonly used as structure-directing agents for the self-assembly of monomers (href="#bib8" rid="bib8" class=" bibr popnode">Hasegawa et al., 2016, href="#bib38" rid="bib38" class=" bibr popnode">Wang et al., 2018b, href="#bib42" rid="bib42" class=" bibr popnode">Xiong et al., 2017). Liang et al. reported that, by changing the mixture of F127, phloroglucinol, and formaldehyde and the processing conditions, different forms of fibers, sheets, films, and monoliths can be readily synthesized (href="#bib19" rid="bib19" class=" bibr popnode">Liang and Dai, 2006). Estevez et al. reported a dual-templating and post-activation strategy to prepare hierarchical porous carbon (href="#bib6" rid="bib6" class=" bibr popnode">Estevez et al., 2013). Combined ice-template and colloidal silica followed by physical activation was applied to generate interconnected macro-, meso-, and microporosity. However, most of the templates are rather expensive and nonrenewable, which limits their application.In recent years, several studies focused on developing new methods from direct carbonization of special polymers without using any template (href="#bib11" rid="bib11" class=" bibr popnode">Hu et al., 2012, href="#bib51" rid="bib51" class=" bibr popnode">Zhang et al., 2013, href="#bib56" rid="bib56" class=" bibr popnode">Zhu et al., 2015). Porous structure can be formed by regulating the cross-linking style of the polymer or inserting specific elements into the framework. For instance, Puthusseri et al. reported a nontemplating method to synthesize interconnected microporous carbon material by direct pyrolysis of poly (acrylamide-co-acrylic acid) potassium salt without any additional activation. During the pyrolysis, the potassium in the polymer reacted with the carbon to form K2CO3, which creates pores in the carbon framework (href="#bib23" rid="bib23" class=" bibr popnode">Puthusseri et al., 2014). Sevilla et al. reported similar results by using potassium citrate as the precursor (href="#bib26" rid="bib26" class=" bibr popnode">Sevilla and Fuertes, 2014). Apart from K2CO3, chemical compounds, such as KOH, NH3, and NH4H2PO4, were also helpful in the formation of porous carbon (href="#bib14" rid="bib14" class=" bibr popnode">Krüner et al., 2018, href="#bib16" rid="bib16" class=" bibr popnode">Li et al., 2010, href="#bib40" rid="bib40" class=" bibr popnode">Wang and Kaskel, 2012, href="#bib55" rid="bib55" class=" bibr popnode">Zhou et al., 2015).In this study, we proposed a nontemplating method to prepare PCM with high capacitance. We first designed and synthesized a hyper-cross-linked N, P-rich polymer containing the P–N groups, denoted as polyphosphamide resin (PAR). Hyper-cross-linked N, P-rich polymer with hierarchical framework can not only facilitate the formation of well-defined pore structure but also increase the SSA by activation of the formed N, P species (such as NH3 and NH4H2PO4). Afterward, the PAR was pyrolyzed and post-activated to prepare PCMs. The properties of PAR and the as-prepared PCM were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectrum, scanning electron microscopy (SEM), etc. The electrochemical capacitance performance of the as-obtained PCMs was evaluated both in the three-electrode and two-electrode systems. The role of N, P in improving the PCM performance was also investigated.
机译:<!-fig ft0-> <!-fig @ position =“ position” anchor“ == f4-> <!-fig mode =” anchred“ f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介随着常规能源的枯竭,绿色和可持续的能源转换与存储技术正在吸引越来越受到关注。在各种储能装置中,超级电容器具有充放电率高,循环寿命长,能量转换效率高等优点。根据能量存储机制,超级电容器可分为双层电容器(EDLC)和伪电容器()。 EDLC通过电极-电解质界面处的离子吸附-解吸来存储能量。 EDLC的典型材料始终具有高的比表面积(SSA),例如多孔碳(),碳纳米管()和石墨烯()。伪电容器通过电极材料(例如Ni(OH)2(),MnO2()和V2O5())的可逆法拉第反应存储能量。迄今为止,由于其低成本和高可靠性,EDLC仍占据主导市场地位。多孔碳材料(PCM)由于其稳定的物理和化学性能,大的SSA,特别是EDLC而被广泛用作超级电容器的电极材料。可控的孔结构,高电导率和低成本(,,,)。基于PCM的超级电容器的电容主要取决于PCM的SSA和孔结构,分别提供离子存储界面和促进离子传输(,)。因此,许多研究致力于通过在保留较大的SSA的前提下制备有序和分层(微孔和中孔)的PCM来优化孔结构,以增强EDLC的能力(,href =“#bib15” rid =“ bib15”类=“ bibr popnode”> Largeot等,2008 ,href="#bib24" rid="bib24" class=" bibr popnode">“>等,2013 ,href =“#bib34” rid =“ bib34” class =“ bibr popnode”> Tran和Kalra,2013年)。尽管金属有机框架(href="#bib10" rid="bib10" class=" bibr popnode"> Hu et al。,2010 )和金属碳化物(href =“#bib10” rid =“ bib3” class =“ bibr popnode”> Chmiola等人,2006b )已用于制备可控孔的PCM,有机聚合物是有前途的前体,因为它们可以方便地设计和合成,并具有特定的结构和组成;这些功能对于获得具有所需孔结构的PCM非常重要(href="#bib5" rid="bib5" class=" bibr popnode"> Dutta等人,2014 ,href =“# bib41“ rid =” bib41“ class =” bibr popnode“>魏等人,2013 ,href="#bib43" rid="bib43" class=" bibr popnode">徐等人, 2013 ,href="#bib54" rid="bib54" class=" bibr popnode"> Zhong等人,2012 )。单体的聚合制备有机聚合物提供了调节的可能性最终结构,在此期间,单体可能会被限制在特定的空间内,以进行原位聚合或自组装。例如,Böttger-Hiller等。使用球形SiO2颗粒作为硬模板,以实现原位单体聚合,并通过模板的碳化和洗涤来制备具有多孔壳的空心碳球(href="#bib1" rid="bib1" class=" bibr popnode">博特格-Hiller等人,2013 )。使用表面活性剂或嵌段共聚物作为软模板可以指导单体的聚合,并且在干燥和碳化后,可以得到PCM(href="#bib4" rid="bib4" class=" bibr popnode"> Chuenchom等。 ,2012 )。例如,嵌段共聚物,例如Pluronic F-127(EO106PO70EO106),通常用作单体自组装的结构导向剂(href =“#bib8” rid =“ bib8” class =“ bibr popnode “>长谷川等人,2016 ,href="#bib38" rid="bib38" class=" bibr popnode">王等人,2018b ,href =”# bib42“ rid =” bib42“ class =” bibr popnode“>熊等人,2017 )。梁等。报告指出,通过改变F127,间苯三酚和甲醛的混合物以及加工条件,可以轻松合成不同形式的纤维,片材,薄膜和整料(href =“#bib19” rid =“ bib19” class = “ bibr popnode”> Liang和Dai,2006 )。 Estevez等。报告了双重模板化和活化后的策略,以制备分层多孔碳(href="#bib6" rid="bib6" class=" bibr popnode"> Estevez等,2013 )。结合冰模板和胶体二氧化硅,然后进行物理活化,以产生相互连接的大孔隙,中孔隙和微孔隙。但是,大多数模板非常昂贵且不可更新,这限制了它们的应用。,一些研究的重点是在不使用任何模板的情况下从特殊聚合物直接碳化开发新方法(href="#bib11" rid="bib11" class=" bibr popnode"> Hu等人,2012 , href="#bib51" rid="bib51" class=" bibr popnode">张等人,2013 ,href =“#bib56” rid =“ bib56” class =“ bibr popnode” > Zhu et al。,2015 )。多孔结构可以通过调节聚合物的交联方式或将特定元素插入骨架中来形成。例如,Puthusseri等。报道了一种非模板方法,该方法通过直接热解聚(丙烯酰胺-共丙烯酸)钾盐而没有任何额外的活化来合成互连的微孔碳材料。在热解过程中,聚合物中的钾与碳反应形成K2CO3,从而在碳骨架中形成孔(href="#bib23" rid="bib23" class=" bibr popnode"> Puthusseri等。, 2014 )。塞维利亚等通过使用柠檬酸钾作为前体报道了类似的结果(href="#bib26" rid="bib26" class=" bibr popnode">塞维利亚和富尔特,2014 )。除K2CO3外,诸如KOH,NH3和NH4H2PO4之类的化合物也有助于形成多孔碳(href="#bib14" rid="bib14" class=" bibr popnode">Krüner等。 ,2018 ,href="#bib16" rid="bib16" class=" bibr popnode"> Li等人,2010 ,href =“#bib40” rid =“ bib40 “ class =” bibr popnode“> Wang和Kaskel,2012 ,href="#bib55" rid="bib55" class=" bibr popnode"> Zhou等人,2015 )。在这项研究中,我们提出了一种非模板方法来制备具有高电容的PCM。我们首先设计和合成了含有P–N基团的超交联的富含N,P的聚合物,称为聚磷酰胺树脂(PAR)。具有层次结构的超交联的富含N,P的聚合物不仅可以促进形成明确的孔结构,而且还可以通过激活形成的N,P物种(例如NH 3 和NH 4 H 2 PO 4 )。之后,将PAR热解并后活化以制备PCM。通过傅里叶变换红外(FTIR)光谱,X射线光电子能谱(XPS),拉曼光谱,扫描电子显微镜(SEM)等表征了PAR和所制备的PCM的性能。在三电极和两电极系统中评估获得的PCM。还研究了N,P在改善PCM性能方面的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号