class='head no_bottom_margin' id='sec1title'>Int'/> Endogenous H2S-Triggered In Situ Synthesis of NIR-II-Emitting Nanoprobe for In Vivo Intelligently Lighting Up Colorectal Cancer
首页> 美国卫生研究院文献>iScience >Endogenous H2S-Triggered In Situ Synthesis of NIR-II-Emitting Nanoprobe for In Vivo Intelligently Lighting Up Colorectal Cancer
【2h】

Endogenous H2S-Triggered In Situ Synthesis of NIR-II-Emitting Nanoprobe for In Vivo Intelligently Lighting Up Colorectal Cancer

机译:内源性H2S触发的NIR-II发射纳米探针的原位合成用于活体内智能点亮大肠癌

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionAmong adults older than 50 years, colorectal cancer incidence rates had increased by 22% from 2000 to 2013, which was one of the most common malignancies in the world (, ). Also, some clinical diagnostic methods for colorectal cancer such as colonoscopy, surgical procedures, and carcinoembryonic antigen are well explored (, , , , ). However, all these traditional methods still suffer from some inevitable drawbacks, including extensive medical experience needed, low sensitivity, and great pain to patients (, , , , ). Therefore the development of a non-invasive early diagnostic technique with high sensitivity is urgently demanded for specific visualization of colorectal cancer.Optical imaging method capable of providing direct visualization of disease with high spatial/temporal resolution and high sensitivity has emerged as an indispensable tool for non-invasive disease diagnosis (, , , href="#bib49" rid="bib49" class=" bibr popnode">Zhao et al., 2016). Differing from conventional optical imaging by using the visible and first near-infrared (NIR-I, 700–900 nm) regions, second NIR (NIR-II) optical imaging with emission ranging from 1,000 to 1,700 nm is considered as the next-generation advanced optical imaging technique with superior imaging sensitivity and significant improvement in spatial resolution owing to the remarkably reduced scattering losses (href="#bib19" rid="bib19" class=" bibr popnode">Hong et al., 2012a, href="#bib20" rid="bib20" class=" bibr popnode">Hong et al., 2012b, href="#bib21" rid="bib21" class=" bibr popnode">Hong et al., 2014a, href="#bib22" rid="bib22" class=" bibr popnode">Hong et al., 2014b, href="#bib31" rid="bib31" class=" bibr popnode">Naczynski et al., 2013, href="#bib9" rid="bib9" class=" bibr popnode">Dang et al., 2016, href="#bib50" rid="bib50" class=" bibr popnode">Zhao et al., 2018). In vivo NIR-II imaging began with the utilization of single-walled carbon nanotubes (href="#bib21" rid="bib21" class=" bibr popnode">Hong et al., 2014a, href="#bib22" rid="bib22" class=" bibr popnode">Hong et al., 2014b, href="#bib23" rid="bib23" class=" bibr popnode">Hong et al., 2015, href="#bib10" rid="bib10" class=" bibr popnode">Diao et al., 2015); since then, several other probes including small-molecule dyes (href="#bib46" rid="bib46" class=" bibr popnode">Yang et al., 2018), semiconductor quantum dots (href="#bib2" rid="bib2" class=" bibr popnode">Bruns et al., 2017, href="#bib19" rid="bib19" class=" bibr popnode">Hong et al., 2012a, href="#bib20" rid="bib20" class=" bibr popnode">Hong et al., 2012b), and rare-earth-doped materials (href="#bib55" rid="bib55" class=" bibr popnode">Zhong et al., 2017, href="#bib27" rid="bib27" class=" bibr popnode">Li et al., 2018, href="#bib28" rid="bib28" class=" bibr popnode">Li et al., 2019, href="#bib45" rid="bib45" class=" bibr popnode">Xue et al., 2018) have been explored for in vivo NIR-II imaging. However, most of the developed NIR-II probes presented low specificity for tumor diagnosis, resulting in the absence of targeting visualization of colorectal cancer. Therefore the development of probe with high sensitivity, excellent spatial resolution, and tumor-targeted properties holds great significance for improving the diagnostic sensitivity.It is well known that colon cancer cells overexpress cystathionine-β-synthase, resulting in larger amounts of H2S in tumor than the adjacent normal tissue or non-transformed cells (href="#bib36" rid="bib36" class=" bibr popnode">Szabo et al., 2013). Various fluorescent probes for H2S intracellular imaging were successfully developed by using the visible and NIR-I region (href="#bib30" rid="bib30" class=" bibr popnode">Lin et al., 2015, href="#bib48" rid="bib48" class=" bibr popnode">Yu et al., 2014, href="#bib40" rid="bib40" class=" bibr popnode">Wang et al., 2013a, href="#bib41" rid="bib41" class=" bibr popnode">Wang et al., 2013b, href="#bib38" rid="bib38" class=" bibr popnode">Wang et al., 2018, href="#bib42" rid="bib42" class=" bibr popnode">Wang et al., 2019, href="#bib34" rid="bib34" class=" bibr popnode">Shi et al., 2017, href="#bib52" rid="bib52" class=" bibr popnode">Zhang et al., 2017a, href="#bib53" rid="bib53" class=" bibr popnode">Zhang et al., 2017b). However, few probes have been employed for in vivo H2S-stimulated imaging owing to the limitations of penetration depth and poor spatial resolution by using the traditional visible and NIR-I optical imaging (href="#bib30" rid="bib30" class=" bibr popnode">Lin et al., 2015, href="#bib48" rid="bib48" class=" bibr popnode">Yu et al., 2014, href="#bib40" rid="bib40" class=" bibr popnode">Wang et al., 2013a, href="#bib41" rid="bib41" class=" bibr popnode">Wang et al., 2013b). Undoubtedly, H2S-activated emissions in NIR-II window can provide valuable insight into the accurate and specific diagnosis of colorectal cancers in vivo. Nevertheless, in situ endogenous H2S-activated NIR-II-emissive probes for targeting diagnosis of colon cancer was still scarcely explored. Very recently, a conceptual study was proposed by designing an H2S-activated NIR-II optical probe based on the core-shell silica nanocomposites encapsulating an H2S-responsive organic molecule for detection of colon cancer in vivo (href="#bib44" rid="bib44" class=" bibr popnode">Xu et al., 2018). However, this NIR-II fluorescence imaging probe suffers from some intrinsic problems, such as the complex synthesis process, photo-bleaching, and low photo-stability of organic molecular probes, which impede its further applications in bioimaging fields (href="#bib17" rid="bib17" class=" bibr popnode">He et al., 2018, href="#bib35" rid="bib35" class=" bibr popnode">Shi et al., 2018). Therefore, developing a new H2S-activated inorganic nanoparticulate probe with highly simple synthesis method, non-photo-bleaching nature, high quantum yield (QY), and high photo-stability is highly desirable.Biomolecule-assisted synthesis (href="#bib56" rid="bib56" class=" bibr popnode">Zhou et al., 2015, href="#bib11" rid="bib11" class=" bibr popnode">Dickerson et al., 2008, href="#bib40" rid="bib40" class=" bibr popnode">Wang et al., 2013a, href="#bib41" rid="bib41" class=" bibr popnode">Wang et al., 2013b, href="#bib3" rid="bib3" class=" bibr popnode">Chen et al., 2015a, href="#bib4" rid="bib4" class=" bibr popnode">Chen et al., 2015b, href="#bib5" rid="bib5" class=" bibr popnode">Chen et al., 2015c, href="#bib15" rid="bib15" class=" bibr popnode">Gao et al., 2014) has been demonstrated to be an excellent and useful method for the preparation of inorganic nanomaterials with good biocompatibility and stability in biomedical applications. For example, bovine serum albumin (BSA), tryptophan-based peptides, and chicken egg white (CEW) have been used to prepare carbon-, noble metal-, and metal-based oxide or sulfide nanomaterials (href="#bib7" rid="bib7" class=" bibr popnode">Chong et al., 2015, href="#bib39" rid="bib39" class=" bibr popnode">Wang et al., 2012, href="#bib43" rid="bib43" class=" bibr popnode">Wang et al., 2015, href="#bib3" rid="bib3" class=" bibr popnode">Chen et al., 2015a, href="#bib4" rid="bib4" class=" bibr popnode">Chen et al., 2015b, href="#bib32" rid="bib32" class=" bibr popnode">Reithofer et al., 2014, href="#bib54" rid="bib54" class=" bibr popnode">Zhang et al., 2014, href="#bib25" rid="bib25" class=" bibr popnode">Jana et al., 2014). Among these biomolecules, the CEW complex consists of multiple proteins and is extremely cheap and easily available in daily life (href="#bib56" rid="bib56" class=" bibr popnode">Zhou et al., 2015, href="#bib11" rid="bib11" class=" bibr popnode">Dickerson et al., 2008). Thus, exploring new H2S-activatable NIR-II probe via CEW complex is highly desirable for specific colon cancer detection.Herein, endogenous H2S-triggered NIR-II-emitting nanoprobe based on Ag-CEW complex (href="/pmc/articles/PMC6625970/figure/sch1/" target="figure" class="fig-table-link figpopup" rid-figpopup="sch1" rid-ob="ob-sch1" co-legend-rid="lgnd_sch1">Scheme 1) for specific visualization of colorectal cancer was designed via in situ chemical reaction between Ag-CEW and overexpressed H2S gas in colorectal cancer. The Ag-CEW complex was synthesized by an environment-friendly method by using CEW as the surface ligands for chelating Ag+ at room temperature. More importantly, in situ H2S-activatable NIR-II-emitting nanoprobe for in vivo specific diagnosis of colorectal cancer was achieved. In vivo histological examination was carried out to evaluate the biotoxicity of the Ag-CEW complex.href="/pmc/articles/PMC6625970/figure/sch1/" target="figure" rid-figpopup="sch1" rid-ob="ob-sch1">class="inline_block ts_canvas" href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=6625970_sc1.jpg" target="tileshopwindow">target="object" href="/pmc/articles/PMC6625970/figure/sch1/?report=objectonly">Open in a separate windowclass="figpopup" href="/pmc/articles/PMC6625970/figure/sch1/" target="figure" rid-figpopup="sch1" rid-ob="ob-sch1">Scheme 1Schematic Illustration of the Synthesis Procedure of Ag-CEW Complex and Endogenous H2S-Triggered In Situ Synthesis of Ag2S QDs from Ag-CEW Complex for Highly Specific Visualization of Colon Cancer
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介在50岁以上的成年人中,结直肠癌的发病率比2000年增加了22%到2013年为止,这是世界上最常见的恶性肿瘤之一(,)。此外,对于结肠直肠癌的一些临床诊断方法,例如结肠镜检查,外科手术和癌胚抗原,也进行了深入研究(“,,,”)。但是,所有这些传统方法仍然存在一些不可避免的缺点,包括需要大量的医疗经验,敏感性低以及给患者带来极大的痛苦(“,”,“,”)。因此,迫切需要开发一种具有高灵敏度的非侵入性早期诊断技术,以实现大肠癌的特异性可视化。能够以高时空分辨率和高灵敏度提供疾病直接可视化的光学成像方法已成为不可缺少的工具。非侵入性疾病诊断(,,,,href="#bib49" rid="bib49" class=" bibr popnode"> Zhao等人,2016 )。通过使用可见光和第一近红外(NIR-I,700–900nm)区域与常规光学成像不同,第二种NIR(NIR-II)光学成像的发射范围为1,000至1,700 nm先进的光学成像技术,由于其显着降低的散射损耗,具有卓越的成像灵敏度和空间分辨率的显着提高(href="#bib19" rid="bib19" class=" bibr popnode"> Hong等,2012a ,href="#bib20" rid="bib20" class=" bibr popnode"> Hong等人,2012b ,href =“#bib21” rid =“ bib21” class =“ bibr popnode“> Hong等人,2014a ,href="#bib22" rid="bib22" class=" bibr popnode"> Hong等人,2014b ,href = “#bib31” rid =“ bib31” class =“ bibr popnode”>纳钦斯基等人,2013 ,href="#bib9" rid="bib9" class=" bibr popnode">当等人。,2016 ,href="#bib50" rid="bib50" class=" bibr popnode"> Zhao等人,2018 )。在体内NIR-II成像始于单壁碳纳米管的使用(href="#bib21" rid="bib21" class=" bibr popnode"> Hong等,2014a ,href =“#bib22” rid =“ bib22” class =“ bibr popnode”> Hong等,2014b ,href="#bib23" rid="bib23" class=" bibr popnode"> Hong等,2015 ,href="#bib10" rid="bib10" class=" bibr popnode">刁等,2015 );从那时起,其他几种探针包括小分子染料(href="#bib46" rid="bib46" class=" bibr popnode"> Yang等人,2018 ),半导体量子点(href =“#bib2” rid =“ bib2” class =“ bibr popnode”> Bruns等人,2017 ,href="#bib19" rid="bib19" class=" bibr popnode"> Hong等人,2012a ,href="#bib20" rid="bib20" class=" bibr popnode"> Hong等人,2012b )和掺稀土材料( href="#bib55" rid="bib55" class=" bibr popnode">钟等人,2017 ,href =“#bib27” rid =“ bib27” class =“ bibr popnode” > Li et al。,2018 ,href="#bib28" rid="bib28" class=" bibr popnode"> Li et al。,2019 ,href =“#bib45已经在体内NIR-II成像中探索了“ rid =” bib45“ class =” bibr popnode“> Xue等人,2018 )。但是,大多数已开发的NIR-II探针对肿瘤的诊断均显示出较低的特异性,导致大肠癌的靶向可视化缺乏。因此,开发具有高灵敏度,优异空间分辨率和肿瘤靶向特性的探针对于提高诊断灵敏度具有重要意义。众所周知,结肠癌细胞过度表达胱硫醚-β-合酶,导致肿瘤中大量H2S比相邻的正常组织或未转化的细胞要多(href="#bib36" rid="bib36" class=" bibr popnode"> Szabo等人,2013 )。通过使用可见光和NIR-1区成功开发了用于H2S细胞内成像的各种荧光探针(href="#bib30" rid="bib30" class=" bibr popnode"> Lin等人,2015 ,href="#bib48" rid="bib48" class=" bibr popnode">于et al。,2014 ,href =“#bib40” rid =“ bib40” class =“ bibr popnode “> Wang等人,2013a ,href="#bib41" rid="bib41" class=" bibr popnode"> Wang等人,2013b ,href =”# bib38“ rid =” bib38“ class =” bibr popnode“>王等,2018 ,href="#bib42" rid="bib42" class=" bibr popnode">王等, 2019 ,href="#bib34" rid="bib34" class=" bibr popnode"> Shi et al。,2017 ,href =“#bib52” rid =“ bib52” class =“ bibr popnode”> Zhang等人,2017a ,href="#bib53" rid="bib53" class=" bibr popnode"> Zhang等人,2017b )。然而由于使用传统的可见光和NIR-I光学成像(href =“#bib30” rid =“ bib30”类,因为穿透深度和空间分辨率差)的局限性,很少有探针用于体内H2S刺激成像=“ bibr popnode”> Lin et al。,2015 ,href="#bib48" rid="bib48" class=" bibr popnode"> Yu et al。,2014 ,href =“#bib40” rid =“ bib40” class =“ bibr popnode”>王等人,2013a ,href="#bib41" rid="bib41" class=" bibr popnode">王等,2013b )。毫无疑问,NIR-II窗口中H2S激活的排放物可以为准确,特异性地诊断大肠癌提供有价值的见解。然而,仍很少探索靶向结肠癌诊断的原位内源性H2S活化NIR-II-发射探针。最近,有人提出了一种概念研究,方法是设计一种H2S活化的NIR-II光学探针,该探针基于包裹H2S响应有机分子的核-壳二氧化硅纳米复合材料,用于检测体内结肠癌(href =“#bib44” rid =“ bib44” class =“ bibr popnode”>徐等人,2018 )。但是,这种NIR-II荧光成像探针存在一些固有的问题,例如复杂的合成过程,光漂白和有机分子探针的低光稳定性,这阻碍了它在生物成像领域的进一步应用(href =“ #bib17“ rid =” bib17“ class =” bibr popnode“>他等人,2018 ,href="#bib35" rid="bib35" class=" bibr popnode"> Shi等。 ,2018年)。因此,迫切需要开发一种具有高度简单的合成方法,无光漂白性质,高量子产率(QY)和高光稳定性的新型H2S活化无机纳米粒子探针。生物分子辅助合成(href =“ #bib56“ rid =” bib56“ class =” bibr popnode“>周等人,2015 ,href="#bib11" rid="bib11" class=" bibr popnode">迪克森等人。 ,2008 ,href="#bib40" rid="bib40" class=" bibr popnode"> Wang等人,2013a ,href =“#bib41” rid =“ bib41 “ class =” bibr popnode“> Wang等,2013b ,href="#bib3" rid="bib3" class=" bibr popnode"> Chen等,2015a , href="#bib4" rid="bib4" class=" bibr popnode">陈等人,2015b ,href =“#bib5” rid =“ bib5” class =“ bibr popnode” > Chen等人,2015c ,href="#bib15" rid="bib15" class=" bibr popnode">高等人,2014 )已被证明是出色的生物医学应用中具有良好生物相容性和稳定性的无机纳米材料的制备及有用方法lications。例如,牛血清白蛋白(BSA),色氨酸基肽和鸡蛋白(CEW)已用于制备碳,贵金属和金属基氧化物或硫化物纳米材料(href =“#bib7 “ rid =” bib7“ class =” bibr popnode“> Chong等人,2015 ,href="#bib39" rid="bib39" class=" bibr popnode"> Wang等人,2012 ,href="#bib43" rid="bib43" class=" bibr popnode"> Wang等人,2015 ,href =“#bib3” rid =“ bib3”类=“ bibr popnode”> Chen等人,2015a ,href="#bib4" rid="bib4" class=" bibr popnode"> Chen等人,2015b ,href =“#bib32” rid =“ bib32” class =“ bibr popnode”> Reithofer等人,2014 ,href="#bib54" rid="bib54" class=" bibr popnode">张等,2014 ,href="#bib25" rid="bib25" class=" bibr popnode"> Jana等,2014 )。在这些生物分子中,CEW复合物由多种蛋白质组成,非常便宜且在日常生活中容易获得(href="#bib56" rid="bib56" class=" bibr popnode"> Zhou et al。,2015 ,href="#bib11" rid="bib11" class=" bibr popnode"> Dickerson等人,2008 )。因此,通过CEW复合物探索新的可激活H2S的NIR-II探针对于特异性结肠癌检测非常必要。在此,基于Ag-CEW复合物的内源性H2S触发NIR-II发射纳米探针(href =“ / pmc / articles / PMC6625970 / figure / sch1 /“ target =” figure“ class =” fig-table-link figpopup“ rid-figpopup =” sch1“ rid-ob =” ob-sch1“ co-legend-rid =” lgnd_sch1“>通过Ag-CEW与过表达的H2S气体在大肠癌中的原位化学反应,设计了用于大肠癌特异性可视化的方案1 )。以CEW为表面配体在室温下螯合Ag + ,采用环境友好的方法合成了Ag-CEW配合物。更重要的是,实现了H2S激活的可发射NIR-II的纳米探针用于大肠癌的体内特异性诊断。在体内进行组织学检查以评估Ag-CEW复合物的生物毒性。<!-fig ft0-> <!-fig mode = article f1-> href =“ / pmc / articles / PMC6625970 / figure / sch1 /“ target =” figure“ rid-figpopup =” sch1“ rid-ob =” ob-sch1“> <!-fig / graphic | fig / alternatives / graphic mode =” anchored“ m1-> class="inline_block ts_canvas" href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=6625970_sc1.jpg" target="tileshopwindow"> target="object" href="/pmc/articles/PMC6625970/figure/sch1/?report=objectonly">在单独的窗口中打开 class =“ figpopup “ href =” / pmc / articles / PMC6625970 / figure / sch1 /“ target =” figure“ rid-figpopup =” sch1“ rid-ob =” ob-sch1“>方案1 <!-标题a7 -> Ag-CEW复合物的合成程序示意图和内源性H2S触发的从Ag-CEW复合物原位合成Ag2S QD的结肠癌高度可视化

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号