首页> 美国卫生研究院文献>iScience >Efficient Nitrogen Fixation Catalyzed by Gallium Nitride Nanowire Using Nitrogen and Water
【2h】

Efficient Nitrogen Fixation Catalyzed by Gallium Nitride Nanowire Using Nitrogen and Water

机译:氮气和水的氮化镓纳米线催化高效固氮

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe highly efficient and low-temperature fixation of elemental nitrogen (N2) into ammonia (NH3) is a highly desirable process concerning the well-being for the entire humanity. The process utilizes and transforms extremely abundant atmospheric N2 to produce various important products such as clean fuels, fertilizers, pharmaceuticals, pesticides, explosives, dyes, bleaches, and rocket propellants (). However, the stable N≡N triple bond in N2 renders extreme chemical inertness. Up to now, the predominant method for N2 fixation relies heavily on the Haber-Bosch process, developed a century ago, and requires harsh reaction conditions of 500°C–600°C, 20–50 MPa, and excessive flammable hydrogen (H2) gas. Such process directly consumes more than 1% of the world's annual energy supply (). Furthermore, due to the impractical energy requirement of the traditional electric water-splitting process, H2, as the necessary feedstock for current N2 fixation industries, is still predominantly produced from non-renewable fossil resources (). Although the development of photochemistry in recent years has been enabling N2 fixation at ambient conditions (), using photoexcited electrons generated from photosensitizing semiconductor catalysts such as TiO2 (, , , , , , ; , , ) (including its derivatives such as IIA-oxide-TiO2 ternary compound) (, href="#bib32" rid="bib32" class=" bibr popnode">Li et al., 1983, href="#bib46" rid="bib46" class=" bibr popnode">Oshikiri et al., 2014, href="#bib51" rid="bib51" class=" bibr popnode">Rusina et al., 2001), bismuth oxide (href="#bib4" rid="bib4" class=" bibr popnode">Bai et al., 2016, href="#bib33" rid="bib33" class=" bibr popnode">Li et al., 2015, href="#bib34" rid="bib34" class=" bibr popnode">Li et al., 2016, href="#bib58" rid="bib58" class=" bibr popnode">Wang et al., 2017a, href="#bib59" rid="bib59" class=" bibr popnode">Wang et al., 2017b), CdS (href="#bib5" rid="bib5" class=" bibr popnode">Banerjee et al., 2015, href="#bib8" rid="bib8" class=" bibr popnode">Brown et al., 2016, href="#bib9" rid="bib9" class=" bibr popnode">Cao et al., 2016, href="#bib21" rid="bib21" class=" bibr popnode">Hu et al., 2016a, href="#bib22" rid="bib22" class=" bibr popnode">Hu et al., 2016b, href="#bib23" rid="bib23" class=" bibr popnode">Hu et al., 2016c, href="#bib29" rid="bib29" class=" bibr popnode">Khan et al., 1983, href="#bib28" rid="bib28" class=" bibr popnode">Khan and Rao, 1990, href="#bib37" rid="bib37" class=" bibr popnode">Liu et al., 2016, href="#bib40" rid="bib40" class=" bibr popnode">Miyama et al., 1980, href="#bib54" rid="bib54" class=" bibr popnode">Sun et al., 2017, href="#bib60" rid="bib60" class=" bibr popnode">Wu et al., 2013, href="#bib63" rid="bib63" class=" bibr popnode">Zhang et al., 2016), and carbonaceous materials (such as graphene (href="#bib38" rid="bib38" class=" bibr popnode">Lu et al., 2016, href="#bib62" rid="bib62" class=" bibr popnode">Yang et al., 2017), diamond (href="#bib65" rid="bib65" class=" bibr popnode">Zhu et al., 2013), and graphitic carbon nitride (href="#bib10" rid="bib10" class=" bibr popnode">Cao et al., 2017, href="#bib14" rid="bib14" class=" bibr popnode">Dong et al., 2015, href="#bib21" rid="bib21" class=" bibr popnode">Hu et al., 2016a, href="#bib22" rid="bib22" class=" bibr popnode">Hu et al., 2016b, href="#bib23" rid="bib23" class=" bibr popnode">Hu et al., 2016c, href="#bib24" rid="bib24" class=" bibr popnode">Hu et al., 2017, href="#bib36" rid="bib36" class=" bibr popnode">Liang et al., 2017, href="#bib58" rid="bib58" class=" bibr popnode">Wang et al., 2017a, href="#bib59" rid="bib59" class=" bibr popnode">Wang et al., 2017b)), still these catalysts either give highly limited N2 conversion rate (even with large excessive N2 flowing of >1 L·min−1) or pose stability problems and undergo photo-self-decomposition during reaction (href="#bib20" rid="bib20" class=" bibr popnode">Hoshino, 2001). Such dilemma has been keeping recent N2 fixation researches from gaining further practical impact. Therefore, an innovative design that offers the solution and inspires the potential photo-fixation advancement toward a more sustainable future remains highly desirable.Ever since the first single-crystalline growth in 1969 (href="#bib39" rid="bib39" class=" bibr popnode">Maruska and Tietjen, 1969), nitride semiconductors, represented by gallium nitride (GaN), have attracted much research attention for their extreme stability (melting point >2,500°C), which at the same time enables more than six magnitudes of voltage carrying enhancement and dissipation inhibition compared with conventional oxide semiconductors (href="#bib49" rid="bib49" class=" bibr popnode">Pearton, 1997). With those superior properties, the nitride semiconductor is believed to serve as the semiconductor of the future (href="#bib1" rid="bib1" class=" bibr popnode">Akasaki, 2002). We have demonstrated the superior performance of GaN and its derivatives to carry out highly efficient catalytic photo-water-splitting (href="#bib15" rid="bib15" class=" bibr popnode">Fan et al., 2015, href="#bib31" rid="bib31" class=" bibr popnode">Kibria et al., 2016, href="#bib57" rid="bib57" class=" bibr popnode">Wang et al., 2011, href="#bib61" rid="bib61" class=" bibr popnode">Xu et al., 2018). In early 2017, we reported the preliminary results about GaN as an efficient photosensitizer to conduct ruthenium(Ru)-catalyzed photochemical N2 fixation, which achieved record catalytic conversion rate (href="#bib35" rid="bib35" class=" bibr popnode">Li et al., 2017). Nevertheless, the rate per gram of catalyst was still limited. In addition, the fixation still requires the flammable and non-sustainable H2 gas as the reductant with scarce noble metal as the catalyst. We then contemplated the feasibility to eliminate the use of hydrogen by using water as reductant to conduct highly efficient GaN-catalyzed N2 fixation. Herein, we would like to report photochemical N2 fixation using only N2 and water catalyzed by GaN nanowire (NW).
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介将元素氮(N2)高效,低温固定为氨(NH3 )是涉及全人类福祉的非常可取的过程。该工艺利用并转化了极其丰富的大气N2,以生产各种重要产品,例如清洁燃料,肥料,药品,农药,炸药,染料,漂白剂和火箭推进剂()。但是,N2中稳定的N≡N三键使化学惰性极高。到目前为止,主要的N2固定方法很大程度上依赖于一个世纪前开发的Haber-Bosch工艺,并且要求苛刻的反应条件为500°C–600°C,20–50 MPa和过量的可燃氢(H2)加油站。这种过程直接消耗了全球每年能源供应的1%以上。此外,由于传统的电水分解工艺不切实际的能源需求,H2作为当前N2固定工业的必要原料,仍主要由不可再生的化石资源生产()。尽管近年来光化学的发展已使N2固定在环境条件下(),但可以使用由光敏化半导体催化剂如TiO2(,,,,,,;,)(包括其衍生物如IIA-氧化物)产生的光激发电子-TiO 2三元化合物)(,href="#bib32" rid="bib32" class=" bibr popnode"> Li et al。,1983 ,href =“#bib46” rid =“ bib46 “ class =” bibr popnode“> Oshikiri等人,2014 ,href="#bib51" rid="bib51" class=" bibr popnode"> Rusina等人,2001 ) ,氧化铋(href="#bib4" rid="bib4" class=" bibr popnode">白等人,2016 ,href =“#bib33” rid =“ bib33” class = “ bibr popnode”> Li et al。,2015 ,href="#bib34" rid="bib34" class=" bibr popnode"> Li et al。,2016 ,href =“#bib58” rid =“ bib58” class =“ bibr popnode”>王等人,2017a ,href="#bib59" rid="bib59" class=" bibr popnode">王等人等,2017b ),CdS(href="#bib5" rid="bib5" class=" bibr popnode"> Banerjee等人,2015 ,hre f =“#bib8” rid =“ bib8” class =“ bibr popnode”>布朗等人,2016 ,href="#bib9" rid="bib9" class=" bibr popnode">曹et al。,2016 ,href="#bib21" rid="bib21" class=" bibr popnode"> Hu et al。,2016a ,href =“#bib22” rid =“ bib22” class =“ bibr popnode”> Hu et al。,2016b ,href="#bib23" rid="bib23" class=" bibr popnode"> Hu et al。,2016c ,href="#bib29" rid="bib29" class=" bibr popnode">可汗等人,1983 ,href =“#bib28” rid =“ bib28” class =“ bibr popnode“> Khan and Rao,1990 ,href="#bib37"rid=bib37"class="bibr popnode"> Liu等人,2016 ,href =” #bib40“ rid =” bib40“ class =” bibr popnode“> Miyama等人,1980 ,href="#bib54" rid="bib54" class=" bibr popnode"> Sun等人。 ,2017 ,href="#bib60" rid="bib60" class=" bibr popnode"> Wu等人,2013 ,href =“#bib63” rid =“ bib63 “ class =” bibr popnode“> Zhang等人,2016 )和碳质材料(例如石墨烯(href="#bib38" rid="bib38" class=" bibr popnode"> Lu等人)等,2016 ,hre f =“#bib62” rid =“ bib62” class =“ bibr popnode”> Yang等人,2017 ),钻石(href =“#bib65” rid =“ bib65” class =“ bibr popnode “> Zhu等人,2013 )和石墨氮化碳(href="#bib10" rid="bib10" class=" bibr popnode"> Cao等人,2017 , href="#bib14" rid="bib14" class=" bibr popnode">东等人,2015 ,href =“#bib21” rid =“ bib21” class =“ bibr popnode” > Hu et al。,2016a ,href="#bib22" rid="bib22" class=" bibr popnode"> Hu et al。,2016b ,href =“#bib23 “ rid =” bib23“ class =” bibr popnode“> Hu et al。,2016c ,href="#bib24" rid="bib24" class=" bibr popnode"> Hu et al。,2017 ,href="#bib36" rid="bib36" class=" bibr popnode"> Liang et al。,2017 ,href =“#bib58” rid =“ bib58”类=“ bibr popnode”> Wang等人,2017a ,href="#bib59" rid="bib59" class=" bibr popnode"> Wang等人,2017b )),仍然这些催化剂要么提供非常有限的N2转化率(即使大量过量的N2流动> 1 L·min -1 ),也可以保持稳定性会在反应过程中产生斑点并经历光自我分解(href="#bib20" rid="bib20" class=" bibr popnode">星野,2001 )。这种困境使最近的N2固定研究无法获得进一步的实际影响。因此自1969年首次实现单晶生长以来(href =“#bib39” rid =“ bib39”类)以来,仍然非常需要能够提供解决方案并激发潜在的光定影技术进步以实现更可持续的未来的创新设计。 Maruska和Tietjen,1969 ),以氮化镓(GaN)为代表的氮化物半导体,由于其极高的稳定性(熔点> 2,500°C)而受到了广泛的研究关注,在相同的温度下与传统的氧化物半导体相比,时间可以实现超过六个幅度的电压增强和耗散抑制(href="#bib49" rid="bib49" class=" bibr popnode">皮尔顿,1997 )。凭借这些优越的性能,氮化物半导体被认为是未来的半导体(href="#bib1" rid="bib1" class=" bibr popnode"> Akasaki,2002 )。我们已经证明了GaN及其衍生物在执行高效催化光水分解方面的卓越性能(href="#bib15" rid="bib15" class=" bibr popnode"> Fan等人,2015年< / a>,href="#bib31" rid="bib31" class=" bibr popnode">基布里亚等人,2016 ,href =“#bib57” rid =“ bib57” class = “ bibr popnode”> Wang等人,2011 ,href="#bib61" rid="bib61" class=" bibr popnode"> Xu等人,2018 )。在2017年初,我们报告了有关GaN作为进行钌(Ru)催化的光化学N2固定的有效光敏剂的初步结果,该记录实现了创纪录的催化转化率(href =“#bib35” rid =“ bib35” class =“ bibr popnode“> Li等人,2017 )。然而,每克催化剂的速率仍然受到限制。另外,固定仍然需要易燃和不可持续的H2气体作为还原剂,而稀有贵金属作为催化剂。然后,我们考虑了通过使用水作为还原剂进行高效的GaN催化的N 2 固定来消除使用氢的可行性。在此,我们想报道仅使用N 2 和GaN纳米线(NW)催化的水进行光化学N 2 固定的情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号