首页> 美国卫生研究院文献>iScience >Hollow N-doped Carbon Polyhedrons with Hierarchically Porous Shell for Confinement of Polysulfides in Lithium–Sulfur Batteries
【2h】

Hollow N-doped Carbon Polyhedrons with Hierarchically Porous Shell for Confinement of Polysulfides in Lithium–Sulfur Batteries

机译:空心N掺杂碳多面体具有多层多孔壳用于限制锂硫电池中的多硫化物

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionHigh energy density, low cost, and environmental benignity enable the Li–S battery to become a promising next-generation energy supplier (, , ). However, the performance of Li–S battery is strongly plagued and restrained by poor electrical conductivity and volume variation of sulfur, especially the dissolution of lithium polysulfides (, , ). Resolving these problems is thus essential to meet the practical requirements of commercial applications (). The key approach to figure out these obstructions is exploring appropriate host materials to serve as the conductive networks and immobilize sulfur effectively, such as the host materials with porous structures and chemical polar sites to suppress polysulfide shuttling by physical confinement and chemical adsorption (, , , , , , , ). N-doped porous carbon hosts have attracted great attention for sulfur cathodes because these hosts not only enhance the conductivity of sulfur cathodes but also increase the interaction of the polar N sites and polysulfides through the Li–N bond, which can alleviate polysulfide shuttling through physical and chemical confinement using the porous structure and chemisorption (href="#bib8" rid="bib8" class=" bibr popnode">Guo et al., 2017, href="#bib28" rid="bib28" class=" bibr popnode">Pang and Nazar, 2016, href="#bib32" rid="bib32" class=" bibr popnode">Su et al., 2017). Therefore, great efforts have been devoted to fabricate the N-doped carbon materials by using different precursors, such as urea, pyrrole, amines, carbohydrates, and porous organic polymers (href="#bib11" rid="bib11" class=" bibr popnode">Inagaki et al., 2018, href="#bib14" rid="bib14" class=" bibr popnode">Li et al., 2018b, href="#bib26" rid="bib26" class=" bibr popnode">Niu et al., 2015, href="#bib30" rid="bib30" class=" bibr popnode">Pei et al., 2016, href="#bib40" rid="bib40" class=" bibr popnode">Yang et al., 2014). Furthermore, the composites of the above-mentioned precursors with carbon nanotubes or graphene are also extensively designed to construct N-doped carbon hosts (href="#bib27" rid="bib27" class=" bibr popnode">Pan et al., 2017, href="#bib46" rid="bib46" class=" bibr popnode">Zhang et al., 2018b). However, the uncontrollability of pore structure or N-doping for the above-mentioned precursors brings some inconclusive or adverse effects on the practical electrochemical performances.Recently, it has been found that metal-organic frameworks (MOFs) are effective precursors to construct N-doped carbon hosts because of their great superiority in compositions and structures (href="#bib3" rid="bib3" class=" bibr popnode">Chen et al., 2014, href="#bib13" rid="bib13" class=" bibr popnode">Jiang et al., 2017, href="#bib17" rid="bib17" class=" bibr popnode">Li et al., 2016c, href="#bib23" rid="bib23" class=" bibr popnode">Liu et al., 2017, href="#bib34" rid="bib34" class=" bibr popnode">Tan et al., 2017a, href="#bib37" rid="bib37" class=" bibr popnode">Wu et al., 2013, href="#bib41" rid="bib41" class=" bibr popnode">Yang et al., 2017a). Compared with conventional precursors, MOFs possess regular porous structures, large specific surface areas, and controllable structure and composition, which have helped achieve the improved electrochemical performance in Li–S batteries by using MOFs as the carbon precursors (href="#bib1" rid="bib1" class=" bibr popnode">Chang et al., 2018, href="#bib2" rid="bib2" class=" bibr popnode">Chen et al., 2018, href="#bib21" rid="bib21" class=" bibr popnode">Li and Yin, 2015, href="#bib35" rid="bib35" class=" bibr popnode">Tan et al., 2017b, href="#bib44" rid="bib44" class=" bibr popnode">Zhang et al., 2018c, href="#bib45" rid="bib45" class=" bibr popnode">Zhang et al., 2018d). Nevertheless, the majority of MOF-derived N-doped carbon materials are almost microporous structures and have limited pore volumes, which are unfavorable for the large mass transport and the release of volume strain. In addition, the solid structure with micropores generally causes the slow adsorption kinetics for long-chain polysulfides owing to the physical barriers of diffusion pathways. Although the large pore volumes or hollow structures could be obtained through template strategies, the removal of template always uses highly corrosive agents (such as HF, NaOH), and the cavity size is largely dependent on the size of the template. Therefore, a straightforward method with mild condition is highly expected to create porous N-doped carbon hosts with large cavity.Herein, we fabricate a hollow N-doped carbon (HNC) material with hierarchical pores by simple etching and carbonizing of ZIF-8 particles. ZIF-8 can be mildly etched by tannic acid to easily get a shelled polyhedron precursor (href="#bib49" rid="bib49" class=" bibr popnode">Zhang et al., 2017). This polyhedron precursor-derived HNC particle efficiently combines the micropores, mesopores, and internal void space, which is first used as the sulfur host for Li–S battery. Different from the ZIF-8-derived solid microporous host, HNC polyhedron with hollow structure is favorable for sulfur immersion and polysulfide encapsulation via the void space and porous outer shell. With HNC serving as the sulfur host, the S@HNC cathode enables a 72 wt% sulfur loading. Additionally, this hybrid cathode combines the ingenious physical confinement with appropriate chemical adsorption for polysulfide anions, synergistically providing multilayered barriers for polysulfide diffusion by means of the interconnected carbon network and strong interaction between nitrogen and lithium polysulfides. These two functions work well together to not only increase the reversible capacity of hybrid cathode but also display fast adsorption for polysulfides compared with the ZIF-8-derived solid microporous carbon material.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介高能量密度,低成本和环境友好性使Li–S电池成为有前途的下一代能源供应商(,)。但是,Li-S电池的性能受到严重的困扰,并受到不良的电导率和硫的体积变化,尤其是多硫化锂(,)的溶解的制约。因此,解决这些问题对于满足商业应用的实际需求至关重要。解决这些障碍的关键方法是探索合适的基质材料作为导电网络并有效地固定硫,例如具有多孔结构和化学极性位点的基质材料通过物理限制和化学吸附来抑制多硫化物穿梭(,, ,,,,)。氮掺杂的多孔碳基质对硫阴极引起了极大的关注,因为这些基质不仅增强了硫阴极的电导率,而且还通过Li-N键增加了极性N位与多硫化物的相互作用,从而可以通过物理作用减轻多硫化物的穿梭。以及使用多孔结构和化学吸附作用进行化学限制(href="#bib8" rid="bib8" class=" bibr popnode"> Guo et al。,2017 ,href =“#bib28” rid =“ bib28” class =“ bibr popnode”> Pang and Nazar,2016 ,href="#bib32" rid="bib32" class=" bibr popnode"> Su et al。,2017 )。因此,通过使用不同的前体(例如尿素,吡咯,胺,碳水化合物和多孔有机聚合物),人们致力于制造N掺杂碳材料(href =“#bib11” rid =“ bib11” class = “ bibr popnode”> Inagaki等人,2018 ,href="#bib14" rid="bib14" class=" bibr popnode"> Li等人,2018b ,href =“#bib26” rid =“ bib26” class =“ bibr popnode”>牛等,2015 ,href="#bib30" rid="bib30" class=" bibr popnode">裴等等人,2016 ,href="#bib40" rid="bib40" class=" bibr popnode"> Yang等人,2014 )。此外,上述前体与碳纳米管或石墨烯的复合材料也得到了广泛的设计,以构建N掺杂的碳主体(href="#bib27" rid="bib27" class=" bibr popnode"> Pan等人。,2017 ,href="#bib46" rid="bib46" class=" bibr popnode"> Zhang等人,2018b )。然而,上述前体的孔结构或N掺杂的不可控性对实际的电化学性能带来了不确定的或不利的影响。最近,已经发现金属有机骨架(MOF)是构造N-的有效前体。掺杂碳的主体,因为它们在组成和结构上非常优越(href="#bib3" rid="bib3" class=" bibr popnode"> Chen et al。,2014 ,href =“# bib13“ rid =” bib13“ class =” bibr popnode“>江等人,2017 ,href="#bib17" rid="bib17" class=" bibr popnode">李等人, 2016c ,href="#bib23" rid="bib23" class=" bibr popnode">刘等人,2017 ,href =“#bib34” rid =“ bib34” class =“ bibr popnode”> Tan等人,2017a ,href="#bib37" rid="bib37" class=" bibr popnode"> Wu等人,2013 ,< a href =“#bib41” rid =“ bib41” class =“ bibr popnode”> Yang等人,2017a )。与传统的前驱体相比,MOF具有规则的多孔结构,大的比表面积以及可控的结构和组成,通过将MOF用作碳前驱体,有助于改善Li–S电池的电化学性能(href =“#bib1 “ rid =” bib1“ class =” bibr popnode“> Chang et al。,2018 ,href="#bib2" rid="bib2" class=" bibr popnode"> Chen et al。,2018 ,href="#bib21" rid="bib21" class=" bibr popnode">李和尹,2015年,href =“#bib35” rid =“ bib35” class = “ bibr popnode”> Tan等人,2017b ,href="#bib44" rid="bib44" class=" bibr popnode"> Zhang等人,2018c ,href =“#bib45” rid =“ bib45” class =“ bibr popnode”> Zhang等人,2018d )。但是,大多数MOF衍生的N掺杂碳材料几乎都是微孔结构,并且孔体积有限,这不利于大质量传输和释放体积应变。另外,由于扩散途径的物理屏障,具有微孔的固体结构通常导致长链多硫化物的缓慢吸附动力学。尽管可以通过模板策略获得较大的孔体积或中空结构,但模板的去除始终使用高度腐蚀性的试剂(例如HF,NaOH),并且空腔大小在很大程度上取决于模板的大小。因此因此,我们期望在温和的条件下采用一种简单的方法来制造具有大空腔的多孔N掺杂碳基质。在这里,我们通过对ZIF-8颗粒进行简单蚀刻和碳化来制造具有分层孔的中空N掺杂碳(HNC)材料。单宁酸可对ZIF-8进行轻度蚀刻以轻松获得带壳的多面体前体(href="#bib49" rid="bib49" class=" bibr popnode"> Zhang等人,2017 )。这种源自多面体前体的HNC粒子有效地结合了微孔,中孔和内部空隙空间,这些空隙空间首先用作Li–S电池的硫主体。与ZIF-8衍生的固体微孔基质不同,具有空心结构的HNC多面体有利于通过空隙空间和多孔外壳进行硫浸入和多硫化物的包封。使用HNC作为硫主体,S @ HNC阴极可实现72 wt%的硫负载。此外,该混合阴极将巧妙的物理限制与对多硫化物阴离子的适当化学吸附结合在一起,借助相互连接的碳网络以及氮与多硫化锂之间的强相互作用,为多硫化物的扩散协同提供了多层屏障。与源自ZIF-8的固态微孔碳材料相比,这两个功能很好地协同工作,不仅增加了混合阴极的可逆容量,而且还显示出对多硫化物的快速吸附。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号