首页> 美国卫生研究院文献>iScience >Transmembrane Protein Aptamer Induces Cooperative Signaling by the EPO Receptor and the Cytokine Receptor β-Common Subunit
【2h】

Transmembrane Protein Aptamer Induces Cooperative Signaling by the EPO Receptor and the Cytokine Receptor β-Common Subunit

机译:跨膜蛋白适体诱导EPO受体和细胞因子受体β-共同亚基的协同信号

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionMany aspects of cell behavior are controlled by cell surface receptors that receive extracellular signals and orchestrate the cellular response. The formation and activation of alternative receptor complexes with different subunits and signaling properties can dictate receptor output (e.g., ). The cytokine erythropoietin (EPO) can activate alternative complexes of the EPO receptor (EPOR), a transmembrane (TM) cell surface protein lacking intrinsic kinase activity. Binding of EPO to the EPOR can trigger the homodimerization of EPORs in a productive orientation, leading to the transphosphorylation of Janus kinase 2 (JAK2), which is constitutively associated with the EPOR (, , ). Activated JAK2 phosphorylates multiple tyrosines in the intracellular domain of EPOR, allowing the recruitment and phosphorylation of downstream signaling proteins, including signal transducer and activator of transcription 5 (STAT5) (, , , ). This signaling pathway is essential for the survival, proliferation, and differentiation of erythroid progenitors.In addition to erythropoiesis, the EPOR can mediate non-erythroid outcomes in response to EPO treatment, including a tissue-protective response that prevents apoptosis and promotes proliferation in non-hematopoietic cells subjected to injury or metabolic stress (, , , , , , ), reviewed in href="#bib28" rid="bib28" class=" bibr popnode">Jelkmann et al. (2009). The protective effect of EPO appears to require the activation of a heteroreceptor composed of EPOR and the cytokine receptor β-common subunit (β-common receptor [βcR] also known as CD131). In addition to constitutively binding EPOR, βcR also binds the α-chain of interleukin (IL)-3 receptor, granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor (GM-CSFR), and IL-5 receptor (href="#bib4" rid="bib4" class=" bibr popnode">Blake et al., 2002, href="#bib29" rid="bib29" class=" bibr popnode">Jubinsky et al., 1997, href="#bib27" rid="bib27" class=" bibr popnode">Hercus et al., 2013, href="#bib38" rid="bib38" class=" bibr popnode">Lopez et al., 1992). βcR plays an essential role in signaling by these receptors, which lack JAK2 binding or a significant cytoplasmic domain, by providing bound JAK2 and cytoplasmic tyrosines for phosphorylation (href="#bib25" rid="bib25" class=" bibr popnode">Hansen et al., 2008, href="#bib27" rid="bib27" class=" bibr popnode">Hercus et al., 2013). βcR−/− mice lack EPO-induced tissue protection but retain normal hematopoiesis, showing that βcR is required for tissue protection but not for erythroid differentiation in at least some settings (href="#bib53" rid="bib53" class=" bibr popnode">Weber et al., 2005, href="#bib7" rid="bib7" class=" bibr popnode">Brines et al., 2004). In addition, certain modified versions of EPO, such as lysine-carbamylated EPO, specifically induce the tissue-protective, but not the erythroid, effects of EPO (href="#bib20" rid="bib20" class=" bibr popnode">Erbayraktar et al., 2009, href="#bib33" rid="bib33" class=" bibr popnode">Leist et al., 2004, href="#bib40" rid="bib40" class=" bibr popnode">Murphy and Young, 2006, href="#bib55" rid="bib55" class=" bibr popnode">Yamanaka et al., 2018). These results suggest that the tissue-protective effect of EPO is mediated by an EPOR/βcR heteroreceptor, and not by EPOR homodimerization (href="#bib5" rid="bib5" class=" bibr popnode">Bohr et al., 2015). However, the role of the heteroreceptor in tissue protection remains controversial (see citations in href="#bib11" rid="bib11" class=" bibr popnode">Cheung Tung Shing et al. 2018), and in some situations a classical EPOR homodimer can provide a protective signal (href="#bib51" rid="bib51" class=" bibr popnode">Um et al., 2007). Notably, the elements on the EPOR and βcR required for heteroreceptor formation and the molecular mechanism of signaling by the βcR/EPOR heteroreceptor are unknown.Various receptors, including the EPOR, can be activated through interactions involving their TM domain (TMD). The murine spleen focus-forming virus envelope protein gp55-P specifically binds to the TMD of the mouse EPOR (mEPOR), triggering EPOR activation, erythroid cell proliferation, and polycythemia (href="#bib34" rid="bib34" class=" bibr popnode">Li et al., 1990, href="#bib15" rid="bib15" class=" bibr popnode">Constantinescu et al., 1999b). The platelet-derived growth factor β receptor (PDGFβR) can be activated by the bovine papillomavirus E5 oncoprotein, a 44-residue TM protein that binds specifically to the TMD of the PDGFβR (href="#bib17" rid="bib17" class=" bibr popnode">DiMaio and Petti, 2013, href="#bib41" rid="bib41" class=" bibr popnode">Petti and DiMaio, 1992, href="#bib42" rid="bib42" class=" bibr popnode">Petti et al., 1991). We developed a genetic approach to isolate small biologically active TM proteins in which we construct libraries expressing up to millions of different, small, artificial TM proteins (termed traptamers, for TM aptamers) with randomized, hydrophobic segments. Traptamer libraries are expressed in mammalian cells, and active traptamers are recovered from cells selected for particular biological activities, with the rationale that, by chance, rare traptamers interact with cellular TM proteins and modulate their activity or expression (href="#bib9" rid="bib9" class=" bibr popnode">Cammett et al., 2010, href="#bib21" rid="bib21" class=" bibr popnode">Freeman-Cook et al., 2004, href="#bib22" rid="bib22" class=" bibr popnode">Freeman-Cook and DiMaio, 2005, href="#bib47" rid="bib47" class=" bibr popnode">Scheideman et al., 2012). We have isolated traptamers that specifically activate human EPOR (hEPOR) or mEPOR and cause EPOR-dependent proliferation of murine BaF3 cells (href="#bib9" rid="bib9" class=" bibr popnode">Cammett et al., 2010, href="#bib12" rid="bib12" class=" bibr popnode">Cohen et al., 2014, href="#bib26" rid="bib26" class=" bibr popnode">He et al., 2017). These traptamers bind the TMD of the EPOR and induce hEPOR homodimerization and tyrosine phosphorylation of EPOR and JAK2.Here, we isolate and characterize a new traptamer, ELI-3, that induces proliferation of BaF3 cells that express the EPOR. ELI-3 interacts with the hEPOR and, unlike EPO or previously isolated traptamers that activate the EPOR, does not require intracellular hEPOR tyrosines, but instead requires the endogenously expressed βcR in addition to the EPOR. ELI-3 does not support differentiation in erythroid cells and inhibits serum withdrawal-induced apoptosis in non-hematopoietic cells. These results show that small TM proteins can specifically activate either the EPOR homodimer or the EPOR/βcR heteroreceptor, with distinct biological outcomes. Our results also demonstrate that the EPOR in the EPOR/βcR heteroreceptor uses a non-canonical mechanism to generate a proliferative signal.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介细胞行为的许多方面都受到细胞表面受体的控制,该受体接收细胞外信号并编排细胞反应。具有不同亚基和信号传导性质的替代受体复合物的形成和活化可以决定受体的输出(例如)。细胞因子促红细胞生成素(EPO)可以激活EPO受体(EPOR)的替代复合物,EPO受体是一种缺乏内在激酶活性的跨膜(TM)细胞表面蛋白。 EPO与EPOR的结合可以触发EPOR在生产方向上的均二聚化,从而导致Janus激酶2(JAK2)的转磷酸化,后者与EPOR(,,)组成性相关。活化的JAK2使EPOR胞内结构域中的多个酪氨酸磷酸化,从而使下游信号蛋白(包括信号转导子和转录激活子5(STAT5),“”,“”)的募集和磷酸化。该信号通路对于红系祖细胞的存活,增殖和分化至关重要。除促红细胞生成作用外,EPOR还可以介导对EPO治疗的非红系结局,包括组织保护性反应,可防止凋亡并促进非红系祖细胞的增殖。受到损伤或代谢应激(-,,,,,)的造血细胞,请参见href="#bib28" rid="bib28" class=" bibr popnode"> Jelkmann等。 (2009)。 EPO的保护作用似乎需要激活由EPOR和细胞因子受体β-公共亚基(β-公共受体[βcR]也称为CD131)组成的异受体。除了组成型结合EPOR,βcR还结合白介素(IL)-3受体,粒细胞-巨噬细胞集落刺激因子(GM-CSF)受体(GM-CSFR)和IL-5受体(href =“#bib4” rid =“ bib4” class =“ bibr popnode”>布雷克等人,2002 ,href="#bib29" rid="bib29" class=" bibr popnode"> Jubinsky et al。,1997 ,href="#bib27" rid="bib27" class=" bibr popnode"> Hercus et al。,2013 ,href =“#bib38” rid =“ bib38” class =“ bibr popnode”>洛佩兹等人,1992 )。通过提供结合的JAK2和胞质酪氨酸进行磷酸化,βcR通过这些缺乏JAK2结合或明显的胞质结构域的受体在信号传导中起着至关重要的作用(href =“#bib25” rid =“ bib25” class =“ bibr popnode” > Hansen等,2008 ,href="#bib27" rid="bib27" class=" bibr popnode"> Hercus等,2013 )。 βcR-/-小鼠缺乏EPO诱导的组织保护,但保留了正常的造血功能,这表明,至少在某些情况下,βcR是组织保护所必需的,而不是红系分化所必需的(href =“#bib53” rid =“ bib53” class =“ bibr popnode”>韦伯等人,2005 ,href="#bib7" rid="bib7" class=" bibr popnode">盐水等人,2004 < / a>)。此外,某些修饰的EPO版本,例如赖氨酸氨基甲酸酯化的EPO,会特异性地诱导EPO的组织保护作用,而不是红系的作用(href =“#bib20” rid =“ bib20” class =“ bibr popnode “> Erbayraktar等,2009 ,href="#bib33" rid="bib33" class=" bibr popnode"> Leist等,2004 ,href =”# bib40“ rid =” bib40“ class =” bibr popnode“>墨菲和杨(Murphy and Young),2006 ,href="#bib55" rid="bib55" class=" bibr popnode">山中等,2018 )。这些结果表明,EPO的组织保护作用是由EPOR /βcR异源受体介导的,而不是由EPOR均二聚作用介导的(href="#bib5" rid="bib5" class=" bibr popnode"> Bohr等。 ,2015 )。然而,异受体在组织保护中的作用仍存在争议(请参见href="#bib11" rid="bib11" class=" bibr popnode">张东成等人。2018),以及在某些情况下,经典的EPOR同型二聚体可以提供保护性信号(href="#bib51" rid="bib51" class=" bibr popnode"> Um等人,2007 )。值得注意的是,异源受体形成所需的EPOR和βcR上的元素以及βcR/ EPOR异源受体发出信号的分子机制尚不清楚。包括EPOR在内的各种受体可通过涉及其TM结构域(TMD)的相互作用而被激活。小鼠脾脏聚焦形成病毒包膜蛋白gp55-P与小鼠EPOR(mEPOR)的TMD特异性结合,触发EPOR激活,红系细胞增殖和红细胞增多症(href =“#bib34” rid =“ bib34”类=“ bibr popnode”> Li等人,1990 ,href="#bib15" rid="bib15" class=" bibr popnode"> Constantinescu等人。,1999b )。血小板乳头瘤病毒E5癌蛋白可以激活血小板衍生的生长因子β受体(PDGFβR),这是一种44残基的TM蛋白,与PDGFβR的TMD特异性结合(href =“#bib17” rid =“ bib17” class =“ bibr popnode”> DiMaio和Petti,2013 ,href="#bib41" rid="bib41" class=" bibr popnode"> Petti和DiMaio,1992 ,href =“#bib42” rid =“ bib42” class =“ bibr popnode”> Petti等,1991 )。我们开发了一种遗传学方法来分离具有生物活性的小型TM蛋白,其中我们构建了表达多达数百万个具有随机疏水片段的不同,小型,人工TM蛋白(对于TM适体而言称为traptamers)的文库。诱捕剂文库在哺乳动物细胞中表达,并从为特定生物学活性选择的细胞中回收活性诱捕剂,其基本原理是,偶然的罕见诱捕剂会与细胞TM蛋白相互作用并调节其活性或表达(href =“#bib9 “ rid =” bib9“ class =” bibr popnode“> Cammett等,2010 ,href="#bib21" rid="bib21" class=" bibr popnode"> Freeman-Cook等。 ,2004 ,href="#bib22" rid="bib22" class=" bibr popnode"> Freeman-Cook和DiMaio,2005 ,href =“#bib47” rid =“ bib47“ class =” bibr popnode“> Scheideman等人,2012 )。我们已经分离出了能特异性激活人EPOR(hEPOR)或mEPOR并引起EPOR依赖的鼠BaF3细胞增殖的诱集剂(href="#bib9" rid="bib9" class=" bibr popnode"> Cammett等, 2010 ,href="#bib12" rid="bib12" class=" bibr popnode">科恩等人,2014 ,href =“#bib26” rid =“ bib26” class =“ bibr popnode”>他等人,2017 )。这些捕捉剂结合EPOR的TMD并诱导EPOR和JAK2的hEPOR均二聚化和酪氨酸磷酸化。在这里,我们分离并表征了一种新的捕捉剂ELI-3,它诱导表达EPOR的BaF3细胞增殖。 ELI-3与hEPOR相互作用,与EPO或先前激活EPOR的先前分离的诱变剂不同,它不需要细胞内hEPOR酪氨酸,而是除了EPOR外还需要内源表达的βcR。 ELI-3不支持类红细胞分化,并抑制非造血细胞中血清停药诱导的凋亡。这些结果表明,小的TM蛋白可以特异性激活EPOR同型二聚体或EPOR /βcR异源受体,具有不同的生物学结果。我们的结果还证明,EPOR /βcR异源受体中的EPOR使用非经典机制来产生增殖信号。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号