class='head no_bottom_margin' id='sec1title'>Int'/> Nanocarbon-Edge-Anchored High-Density Pt Atoms for 3-nitrostyrene Hydrogenation: Strong Metal-Carbon Interaction
首页> 美国卫生研究院文献>iScience >Nanocarbon-Edge-Anchored High-Density Pt Atoms for 3-nitrostyrene Hydrogenation: Strong Metal-Carbon Interaction
【2h】

Nanocarbon-Edge-Anchored High-Density Pt Atoms for 3-nitrostyrene Hydrogenation: Strong Metal-Carbon Interaction

机译:用于3-硝基苯乙烯氢化的纳米碳边缘固定的高密度Pt原子:强金属-碳相互作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionSupported metal catalysts with metal particles finely dispersed on high-surface-area support materials are vital for many industrially important catalytic reactions. The surface physicochemical properties of the supports play a crucial role in modifying the catalytic behaviors of supported metal species via the strong metal-support interaction (SMSI) (, , ; , ). The classical SMSI phenomenon was discovered on titania-supported Pt-group metals of which high temperature reduction significantly influenced the adsorption properties of small molecules such as H2 and CO (). It has been reported that pretreatment and reaction conditions induce the SMSI as well in oxides supported Au (for CO oxidation) () and Rh (for CO2 reduction by H2) catalysts (), which are termed oxidative and adsorbate-mediated SMSI. Recent reports demonstrated that carbides (), phosphates (, ), and layered double hydroxides () supported Au catalysts exhibited the SMSI effects for water-gas shift, CO oxidation, and ethanol dehydrogenation reactions, respectively. The SMSI has been widely exploited to improve catalyst stability (, , ), identify reaction mechanisms (href="#bib36" rid="bib36" class=" bibr popnode">Matsubu et al., 2017, href="#bib6" rid="bib6" class=" bibr popnode">Bonanni et al., 2012), and enhance activity (href="#bib54" rid="bib54" class=" bibr popnode">Vannice, 1979, href="#bib47" rid="bib47" class=" bibr popnode">Sonstrom et al., 2011). It is highly desired to extend the applications of SMSI concept to broader catalyst systems, beyond metal particles, to tune catalytic properties for desirable performance.Carbon-based catalysts have been widely used in liquid phase hydrogenation reactions because of their high chemical stability, high total surface area, and unique electronic properties (href="#bib48" rid="bib48" class=" bibr popnode">Su et al., 2017). It has been reported that the interaction between metal species and carbon surfaces can be significantly strengthened by engineering defects of, introducing functional groups to, and/or incorporating heteroatoms in carbon structures (href="#bib8" rid="bib8" class=" bibr popnode">Charlier, 2002, href="#bib30" rid="bib30" class=" bibr popnode">Lordi et al., 2001, href="#bib17" rid="bib17" class=" bibr popnode">Ebbesen and Takada, 1995). For example, single metal atoms that are anchored onto heteroatom-doped (e.g., N, O) carbon materials exhibited excellent catalytic performance for various catalytic transformations, such as methane activation (href="#bib12" rid="bib12" class=" bibr popnode">Cui et al., 2018), selective hydrogenation (href="#bib61" rid="bib61" class=" bibr popnode">Yan et al., 2015), hydrogen evolution (href="#bib18" rid="bib18" class=" bibr popnode">Fei et al., 2015, href="#bib25" rid="bib25" class=" bibr popnode">Liu et al., 2018), and oxygen reduction (href="#bib64" rid="bib64" class=" bibr popnode">Zitolo et al., 2015, href="#bib24" rid="bib24" class=" bibr popnode">Li et al., 2018). The uniformity of isolated active sites and the strong interaction between individual metal atoms and support surfaces facilitate the tuning of both selectivity and activity (href="#bib43" rid="bib43" class=" bibr popnode">Qiao et al., 2011, href="#bib26" rid="bib26" class=" bibr popnode">Liu, 2017a, href="#bib27" rid="bib27" class=" bibr popnode">Liu, 2017b, href="#bib20" rid="bib20" class=" bibr popnode">Gates et al., 2017, href="#bib55" rid="bib55" class=" bibr popnode">Wang et al., 2018, href="#bib9" rid="bib9" class=" bibr popnode">Chen et al., 2018). However, the structure of high-surface-area activated carbon supports can become extremely complex and consequently poses formidable challenges for correlating the metal-carbon interaction with the observed catalytic properties.In this work, we fabricated hollow nanocarbons (h-NCs) that possess high-number density of surface edge/defect sites, high total surface area, and highly accessible mesopores. We anchored ∼1.0 wt.% single Pt atoms to the edge/defect sites of the h-NCs to synthesize h-NC supported Pt1 single-atom catalysts (SACs), denoted as 1.0 wt.% Pt1/h-NC. The selective hydrogenation of 3-nitrostyrene to functionalized anilines, which are industrially key intermediates for fine chemicals (href="#bib15" rid="bib15" class=" bibr popnode">Downing et al., 1997, href="#bib10" rid="bib10" class=" bibr popnode">Corma and Serna, 2006), was chosen to probe how the SMSI between carbon and single metal atoms affects the catalytic performance of the fabricated Pt1/h-NC SAC for liquid phase catalytic reactions. Our comprehensive characterization results indicate that the strong interaction between Pt atoms and carbon edge/defect sites modulates the electronic structure of the anchored single Pt atoms and thus their reactivity. The 1.0 wt.% Pt1/h-NC demonstrates excellent activity for hydrogenation of 3-nitrostyrene to 3-vinylaniline with a turnover number (TON) > 31,000/h, more than 20 times higher than that of the best catalyst for such selective hydrogenation reactions reported in the literature (href="#bib59" rid="bib59" class=" bibr popnode">Wei et al., 2014).
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介负载的,金属颗粒细分散在高表面积载体材料上的金属催化剂至关重要用于许多重要的工业催化反应。载体的表面物理化学性质在通过强金属-载体相互作用(SMSI)(,,;,)改变被载体金属物种的催化行为中起着至关重要的作用。在二氧化钛负载的铂族金属上发现了经典的SMSI现象,其高温还原显着影响诸如H2和CO()的小分子的吸附性能。据报道,预处理和反应条件也会在负载有氧化物的Au(用于CO氧化)()和Rh(用于H2还原CO2)的氧化物催化剂中诱导SMSI,这些催化剂被称为氧化和吸附介导的SMSI。最近的报告表明,碳化物(),磷酸盐()和层状双氢氧化物()负载的Au催化剂分别对水煤气变换,CO氧化和乙醇脱氢反应表现出SMSI效应。 SMSI已被广泛用于提高催化剂的稳定性(``''),确定反应机理(href="#bib36" rid="bib36" class=" bibr popnode"> Matsubu et al。,2017 , href="#bib6" rid="bib6" class=" bibr popnode"> Bonanni等人,2012 ),并增强活动性(href =“#bib54” rid =“ bib54”类=“ bibr popnode”> Vannice,1979 ,href="#bib47" rid="bib47" class=" bibr popnode"> Sonstrom等人,2011 )。迫切需要将SMSI概念的应用扩展到除金属颗粒之外的更广泛的催化剂体系,以调整催化性能以获得理想的性能。基于碳的催化剂因其高化学稳定性,高总收率而被广泛用于液相加氢反应中表面积和独特的电子特性(href="#bib48" rid="bib48" class=" bibr popnode"> Su等人,2017 )。据报道,通过在碳结构中引入杂原子,在碳结构中引入官能团和/或引入杂原子,可以显着增强金属物种与碳表面之间的相互作用(href =“#bib8” rid =“ bib8”类=“ bibr popnode”> Charlier,2002 ,href="#bib30" rid="bib30" class=" bibr popnode"> Lordi et al。,2001 ,href =“ #bib17“ rid =” bib17“ class =” bibr popnode“> Ebbesen和Takada,1995 )。例如,固定在杂原子掺杂(例如,N,O)碳材料上的单金属原子对于各种催化转化(例如甲烷活化)表现出出色的催化性能(href =“#bib12” rid =“ bib12”类=“ bibr popnode”> Cui等人,2018 ),选择性氢化(href="#bib61" rid="bib61" class=" bibr popnode"> Yan等人,2015 ),氢释放(href="#bib18" rid="bib18" class=" bibr popnode"> Fei等人,2015 ,href =“#bib25” rid =“ bib25” class =“ bibr popnode”> Liu等人,2018 )和氧气还原(href="#bib64" rid="bib64" class=" bibr popnode"> Zitolo等人,2015 < / a>,href="#bib24" rid="bib24" class=" bibr popnode"> Li等人,2018 )。隔离的活性位点的均匀性以及各个金属原子与支撑表面之间的强相互作用促进了选择性和活性的调节(href="#bib43" rid="bib43" class=" bibr popnode"> Qiao等。 ,2011 ,href="#bib26" rid="bib26" class=" bibr popnode">刘,2017a ,href =“#bib27” rid =“ bib27” class = “ bibr popnode”>刘,2017b ,href="#bib20" rid="bib20" class=" bibr popnode">盖茨等人,2017 ,href =“# bib55“ rid =” bib55“ class =” bibr popnode“> Wang等人,2018 ,href="#bib9" rid="bib9" class=" bibr popnode"> Chen等人, 2018 )。然而,高表面积活性炭载体的结构可能变得极其复杂,因此在将金属碳相互作用与观察到的催化性能相关方面提出了巨大的挑战。在这项工作中,我们制备了具有以下特征的中空纳米碳(h-NCs)高数量的表面边缘/缺陷部位密度,高的总表面积和易于接近的中孔。我们将约1.0 wt。%的单个Pt原子锚定到h-NC的边缘/缺陷部位,以合成h-NC负载的Pt1单原子催化剂(SAC),表示为1.0 wt。%Pt1 / h-NC。 3-硝基苯乙烯选择性加氢为官能化的苯胺,苯胺是精细化学品的工业关键中间体(href="#bib15" rid="bib15" class=" bibr popnode"> Downing等,1997 ,href="#bib10" rid="bib10" class=" bibr popnode"> Corma and Serna,2006 )选择来探讨碳和单金属原子之间的SMSI如何影响所制备的Pt1 / h-NC SAC的液相催化反应的催化性能。我们全面的表征结果表明,Pt原子与碳边缘/缺陷位点之间的强相互作用调节了锚定的单个Pt原子的电子结构,从而调节了它们的反应性。 1.0 wt。%Pt1 / h-NC证明了将3-硝基苯乙烯氢化成3-乙烯基苯胺的优异活性,周转数(TON)> 31,000 / h,比用于这种选择性氢化的最佳催化剂的催化活性高20倍以上文献中报道的反应(href="#bib59" rid="bib59" class=" bibr popnode"> Wei等人,2014 )。

著录项

  • 期刊名称 iScience
  • 作者

    Yang Lou; Honglu Wu; Jingyue Liu;

  • 作者单位
  • 年(卷),期 2019(13),-1
  • 年度 2019
  • 页码 190–198
  • 总页数 29
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号