首页> 美国卫生研究院文献>iScience >Sodium Dodecyl Sulfate Preferentially Promotes Enclathration of Methane in Mixed Methane-Tetrahydrofuran Hydrates
【2h】

Sodium Dodecyl Sulfate Preferentially Promotes Enclathration of Methane in Mixed Methane-Tetrahydrofuran Hydrates

机译:十二烷基硫酸钠优先促进甲烷在四氢呋喃混合水合物中的凝聚作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionClathrate or gas hydrates are crystalline non-stoichiometric compounds formed by guest molecules, such as CH4, THF, etc., and host water molecules at a suitable pressure/temperature condition. Depending on the size, composition, and chemical properties of the guest molecules, clathrate hydrates typically crystallize in three different structures, cubic structures I and II (sI and sII) and hexagonal sH. sI and sII hydrates consist of two different types of cages, called small (pentagonal dodecahedron, 512) and large (tetrakaidecahedron, 51262 or 51264) cages. A unit cell of sI hydrate consists of six large 51262 cages and two small 512 cages formed by 46 water molecules (pure CH4 hydrate); however, sII hydrate consists of 8 large (51264) cages and 16 small (512) cages formed by 136 water molecules (for example, mixed CH4-THF hydrate) (, , , ). Recently, we demonstrated that mixed CH4-THF hydrates (sII) offer a promising approach to scale up the solidified natural gas (SNG) technology by shifting the methane hydrate storage conditions to the milder side while still maintaining very fast hydrate formation kinetics (, , ). SNG technology provides an excellent opportunity to store natural gas or methane on a large scale (, , ). Furthermore, to understand the rapid kinetics of mixed hydrate formation, Kumar et al., elucidated the mechanism of mixed CH4-THF hydrate formation employing high-pressure differential scanning calorimetry (HP μ-DSC); they reported the formation of two types of sII hydrates (pure THF and mixed CH4-THF hydrates) with a stoichiometric amount of THF (5.56 mol %) in water (). For pure THF hydrates (THF.17H2O) the dissociation temperature is 277.5 K at 1.0 bar (THF occupies the large cages and all the small cages are empty), which aids the shifting of mixed CH4-THF hydrates toward ambient conditions. Furthermore, literature suggests that mixed hydrates of CH4 and THF (with stoichiometric amount, 5.56 mol % THF) form sII hydrates where all the large cages are occupied by THF and small cages by CH4 molecules (, , ). Seo et al. reported a 36.84% occupancy of small cages by CH4 and more than 99% occupancy of large cages by THF molecules for mixed CH4-THF hydrates (). Prasad et al. have also reported that methane did not occupy the large cage for 5.88 mol % THF. At a stoichiometric amount of THF, no C-H stretch from methane was observed in the large cages (href="#bib9" rid="bib9" class=" bibr popnode">Prasad et al., 2009). Thus the relevant literature on CH4-THF hydrates shows that methane neither occupies the large cages of sII nor co-exists in the resultant hydrate as a mixture of sI and sII hydrates. Higher methane occupancy in small and large cages of sII hydrate (in the presence of THF) would result in a higher methane storage capacity at milder formation conditions. Seo et al. have reported methane occupancy in both the cages (small and large) of sII hydrate, when powdered THF·17H2O (formed at 263 K) was exposed to CH4 gas at a pressure of 5.0 MPa and a temperature of 274 K. They suggested that the occupancy of methane in large cages is kinetically controlled and that it takes a longer time to occupy the large cages (href="#bib12" rid="bib12" class=" bibr popnode">Seo et al., 2009). Thus the presence of kinetic promoters (like sodium dodecyl sulfate [SDS]) and suitable experimental conditions may allow methane to share the large cages with THF and also enhance the small cage occupancy, resulting in a thermodynamically more stable mixed CH4-THF hydrate. Thus the focus of the present work is to understand the influence of SDS on mixed CH4-THF hydrate formation at the molecular level and to distinguish the various types of hydrates (pure methane, pure THF, and mixed methane-THF) formed in different thermodynamic or kinetically controlled conditions. In this work, we employ HP μ-DSC and in situ Raman spectroscopy to characterize the mixed CH4-THF hydrates in the presence and absence of SDS. Change in heat flow during hydrate formation and dissociation process in the presence of 5.56 mol % THF (stoichiometric composition) with and without a kinetic promoter (SDS, 100 and 1,000 ppm) was monitored employing HP μ-DSC. The formed hydrates were distinguished using in situ Raman spectra in real time. Refer to the href="#mmc1" rid="mmc1" class=" supplementary-material">Supplemental Information for experimental method and procedures (href="#mmc1" rid="mmc1" class=" supplementary-material">Figures S1–S3).
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介包合物或气体水合物是由客体分子(例如CH4)形成的结晶非化学计量化合物,THF等,并在合适的压力/温度条件下吸收水分子。取决于客体分子的大小,组成和化学性质,笼形水合物通常以三种不同的结构结晶,即立方结构I和II(sI和sII)和六角形sH。 sI和sII水合物由两种不同类型的笼子组成,分别称为小笼笼(五角十二面体,5 12 )和大笼笼(四kai十二面体,5 12 6 2 或5 12 6 4 )的笼子。 sI水合物的晶胞由六个大的5 12 6 2 笼子和两个由46个水分子组成的小5 12 笼子组成(纯CH4水合物);然而,sII水合物由136个水分子形成的8个大(5 12 6 4 )笼子和16个小(5 12 )笼子组成(例如,混合的CH4-THF水合物)(、、、、)。最近,我们证明了混合CH4-THF水合物(sII)提供了一种有前途的方法,可通过将甲烷水合物的储存条件转移到较温和的一侧,同时仍保持非常快的水合物形成动力学来扩大固体天然气(SNG)技术。 )。 SNG技术为大规模存储天然气或甲烷提供了极好的机会。此外,为了了解混合水合物形成的快速动力学,Kumar等人通过高压差示扫描量热法(HPμ-DSC)阐明了CH4-THF水合物混合形成的机理;他们报告了两种类型的sII水合物(纯THF和CH4-THF混合水合物)与化学计量的四氢呋喃(5.56 mol%)形成的水()。对于纯THF水合物(THF.17H2O),在1.0巴下的解离温度为277.5 K(THF占据大笼子,所有小笼子都空了),这有助于将混合的CH4-THF水合物移向环境条件。此外,文献表明CH4和THF的混合水合物(化学计量为5.56 mol%THF)形成sII水合物,其中所有大笼子都被THF占据,小笼子中的CH4分子(``,'')占据。徐等人报道了混合CH4-THF水合物的小分子笼中CH4占36.84%,大分子笼中THF占99%以上()。 Prasad等。也有报道说甲烷没有占据5.88mol%THF的大笼子。在化学计量的THF中,在大笼子中未观察到甲烷甲烷的CH延伸(href="#bib9" rid="bib9" class=" bibr popnode"> Prasad et al。,2009 ) 。因此,有关CH4-THF水合物的相关文献表明,甲烷既不占据sII的大笼子,也不以sI和sII水合物的混合物形式存在于所得的水合物中。在较小和较大的sII水合物笼中(在THF存在下)较高的甲烷占用率会在较温和的形成条件下导致较高的甲烷存储能力。徐等人据报道,当粉状的THF·17H2O(在263 K下形成)在5.0 MPa的压力和274 K的温度下暴露于CH4气体时,sII水合物的笼子(大小)中的甲烷占有率都很高。大型笼中甲烷的占据受到动力学控制,占用大型笼需要更长的时间(href="#bib12" rid="bib12" class=" bibr popnode"> Seo et al。,2009 )。因此,动力学促进剂(如十二烷基硫酸钠[SDS])的存在和合适的实验条件可能使甲烷与THF共享大笼子,也提高了小笼子的占有率,从而产生了热力学上更稳定的CH4-THF混合水合物。因此,本文的重点是在分子水平上了解SDS对CH 4 -THF混合水合物形成的影响,并区分各种类型的水合物(纯甲烷,纯THF和混合甲烷)。甲烷-THF)在不同的热力学或动力学控制条件下形成。在这项工作中,我们使用HPμ-DSC和原位拉曼光谱法在存在和不存在SDS的情况下表征混合的CH 4 -THF水合物。在5.56 mol%THF(化学计量组成)存在和不存在动力学促进剂(SDS,100和1)的条件下,水合物形成和分解过程中热流的变化使用HPμ-DSC监测浓度为0.0000 ppm)。使用原位拉曼光谱实时区分形成的水合物。有关实验方法和步骤,请参考href="#mmc1" rid="mmc1" class="Supplementary-material">补充信息(href =“#mmc1” rid =“ mmc1”类=“ Supplementary-material”>图S1-S3 )。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号