首页> 美国卫生研究院文献>iScience >A Likely Ancient Genome Duplication in the Speciose Reef-Building Coral Genus Acropora
【2h】

A Likely Ancient Genome Duplication in the Speciose Reef-Building Coral Genus Acropora

机译:在特定的造礁珊瑚属棘足类中可能是古代基因组重复。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionReef-building corals contribute to tropical marine ecosystems that support innumerable marine organisms, but reefs are increasingly threatened because of recent increases in seawater temperatures, pollution, and other stressors (, ). The Acroporidae is a family of reef-building corals within the phylum Cnidaria, one of the basal phyla of the animal clade (, , ). Astreopora (Anthozoa: Acroporidae) is the sister genus in the acroporid lineage according to fossil records and molecular phylogenetic evidence (, , ). Importantly, Acropora (Anthozoa: Acroporidae), one of the most diverse genera of reef-building corals, including more than 150 species in the Indo-Pacific Ocean, is thought to have originated from Astreopora ∼60 mya with several species turnovers (, , , ). Investigating the evolutionary history of this group importantly contributes to our understanding of coral reef biodiversity and conservation. Hybridization among Acropora species has been observed in the wild (), and variable chromosome numbers have been determined in different Acropora lineages (). In addition, gene duplications have been shown in several Acropora gene families (, href="#bib23" rid="bib23" class=" bibr popnode">Hamada et al., 2013). Based on their unique lifestyle, variable chromosome numbers, and complicated reticular evolutionary history, Indo-Pacific Acropora likely originated via polyploidy (href="#bib20" rid="bib20" class=" bibr popnode">Gacesa et al., 2015, href="#bib23" rid="bib23" class=" bibr popnode">Hamada et al., 2013, href="#bib30" rid="bib30" class=" bibr popnode">Kenyon, 1997, href="#bib42" rid="bib42" class=" bibr popnode">Richards and Hobbs, 2015, href="#bib58" rid="bib58" class=" bibr popnode">Van Oppen et al., 2001, href="#bib62" rid="bib62" class=" bibr popnode">Vollmer and Palumbi, 2002, href="#bib68" rid="bib68" class=" bibr popnode">Willis et al., 2006). However, there is no direct molecular and genetic evidence to support this hypothesis.Ancient whole (large-scale)-gene/genome duplication (WGD), or paleopolyploidy, has shaped the genomes of vertebrates, green plants, and other organisms, and is usually regarded as an evolutionary landmark in the origin and diversification of organisms (href="#bib50" rid="bib50" class=" bibr popnode">Soltis et al., 2015, href="#bib56" rid="bib56" class=" bibr popnode">Van de Peer et al., 2009, href="#bib57" rid="bib57" class=" bibr popnode">Van De Peer et al., 2017) (href="#mmc1" rid="mmc1" class=" supplementary-material">Figure S1). Two separate WGD events have been documented in the common ancestors of vertebrates (two rounds of WGD) (href="#bib15" rid="bib15" class=" bibr popnode">Dehal and Boore, 2005) and another major WGD has been reported in the last common ancestor of teleost fish (href="#bib13" rid="bib13" class=" bibr popnode">Christoffels et al., 2004, href="#bib21" rid="bib21" class=" bibr popnode">Glasauer and Neuhauss, 2014). Meanwhile, living angiosperms share an ancient WGD event (href="#bib27" rid="bib27" class=" bibr popnode">Jiao et al., 2011, href="#bib55" rid="bib55" class=" bibr popnode">Tiley et al., 2016), and many other WGD events have been reported in major clades of angiosperms (href="#bib49" rid="bib49" class=" bibr popnode">Soltis et al., 2009, href="#bib59" rid="bib59" class=" bibr popnode">Vanneste et al., 2014, href="#bib66" rid="bib66" class=" bibr popnode">Wang et al., 2018). In addition, two rounds of WGDs in the vertebrates are suggested to have occurred during the Cambrian Period, and some WGDs in plants are believed to have occurred during Cretaceous-Tertiary (href="#bib48" rid="bib48" class=" bibr popnode">Smith et al., 2013, href="#bib57" rid="bib57" class=" bibr popnode">Van De Peer et al., 2017, href="#bib59" rid="bib59" class=" bibr popnode">Vanneste et al., 2014). Thus, WGD is regarded as an important evolutionary way to reduce the risk of extinction (href="#bib56" rid="bib56" class=" bibr popnode">Van de Peer et al., 2009, href="#bib57" rid="bib57" class=" bibr popnode">Van De Peer et al., 2017, href="#bib59" rid="bib59" class=" bibr popnode">Vanneste et al., 2014). However, the study of WGD in Cnidaria has received less attention (href="#bib29" rid="bib29" class=" bibr popnode">Kenny et al., 2016, href="#bib33" rid="bib33" class=" bibr popnode">Li et al., 2018, href="#bib44" rid="bib44" class=" bibr popnode">Schwager et al., 2017, href="#bib56" rid="bib56" class=" bibr popnode">Van de Peer et al., 2009, href="#bib57" rid="bib57" class=" bibr popnode">Van De Peer et al., 2017).Duplicated genes created by WGD have complex fates during diploidization (href="#bib46" rid="bib46" class=" bibr popnode">Sémon and Wolfe, 2007, href="#bib56" rid="bib56" class=" bibr popnode">Van de Peer et al., 2009). Usually, one of the duplicated genes is silenced or lost due to redundancy of gene functions, termed “nonfunctionalization.” However, retained duplicated genes provide important sources of biological complexity and evolutionary novelty due to subfunctionalization, neofunctionalization, and dosage effects (href="#bib14" rid="bib14" class=" bibr popnode">Conant et al., 2014, href="#bib27" rid="bib27" class=" bibr popnode">Jiao et al., 2011). Duplicated genes may develop complementary gene functions via subfunctionalization, evolve new functions through neofunctionalization, or are retained in complicated regulatory networks with different gene expressions due to dosage effects. For instance, duplicated MADS-Box genes are crucial for flower development and the origin of phenotypic novelty in plants (href="#bib56" rid="bib56" class=" bibr popnode">Van de Peer et al., 2009, href="#bib61" rid="bib61" class=" bibr popnode">Veron et al., 2006). Duplicated homeobox genes provide raw genetic material for vertebrate development (href="#bib11" rid="bib11" class=" bibr popnode">Canestro et al., 2013, href="#bib21" rid="bib21" class=" bibr popnode">Glasauer and Neuhauss, 2014). In addition, toxin diversification following gene duplications has been recognized as a mechanism to enhance adaptation in animals (href="#bib31" rid="bib31" class=" bibr popnode">Kondrashov, 2012, href="#bib32" rid="bib32" class=" bibr popnode">Kordiš and Gubenšek, 2000), especially in snake venoms (href="#bib25" rid="bib25" class=" bibr popnode">Hargreaves et al., 2014, href="#bib63" rid="bib63" class=" bibr popnode">Vonk et al., 2013). Interestingly, toxic proteins are involved in various important processes in corals, including prey capture, protection from predators, wound healing, etc (href="#bib2" rid="bib2" class=" bibr popnode">Armoza-Zvuloni et al., 2016, href="#bib4" rid="bib4" class=" bibr popnode">Ben-Ari et al., 2018), but it is still unclear how gene duplications of toxic proteins evolved in corals.Isozyme electrophoresis and restriction fragment length polymorphism were used to identify gene duplications in polyploids a few decades ago (href="#bib19" rid="bib19" class=" bibr popnode">Fürthauer et al., 1999, href="#bib53" rid="bib53" class=" bibr popnode">Stuber and Goodman, 1983). In the past 10 years, next-generation sequencing has generated a wealth of genomic data at vastly decreased cost and reduced efforts (href="#bib22" rid="bib22" class=" bibr popnode">Goodwin et al., 2016, href="#bib24" rid="bib24" class=" bibr popnode">Hardwick et al., 2017). Three main methods were developed to identify WGD, based on (1) analysis of the rate of synonymous substitutions per synonymous site (dS) of duplicated genes within a genome (dS-based method) (href="#bib8" rid="bib8" class=" bibr popnode">Blanc et al., 2003, href="#bib34" rid="bib34" class=" bibr popnode">Lynch and Conery, 2000, href="#bib59" rid="bib59" class=" bibr popnode">Vanneste et al., 2014, href="#bib72" rid="bib72" class=" bibr popnode">Mao, 2019), (2) phylogenetic analysis of gene families among multiple genomes (phylogenomic analysis) (href="#bib9" rid="bib9" class=" bibr popnode">Blomme et al., 2006, href="#bib27" rid="bib27" class=" bibr popnode">Jiao et al., 2011), and (3) synteny block identification compared with sister lineages without WGD (synteny analysis) (href="#bib10" rid="bib10" class=" bibr popnode">Bowers et al., 2003, href="#bib15" rid="bib15" class=" bibr popnode">Dehal and Boore, 2005, href="#bib71" rid="bib71" class=" bibr popnode">Zhang et al., 2017). The dS-based method and phylogenomic analysis only require gene family information, without genome assembly. However, too ancient WGD cannot be detected by the dS-based method, while gene tree uncertainty usually causes bias in the phylogenomic analysis. Both methods rely heavily on gene family estimation and clustering. Inaccurate gene predictions (gene models) and rough gene family cluster algorithms can easily fail to detect WGD using either method. In contrast, the synteny analysis relies heavily on genome assembly quality. Poor assembly quality can hide the WGD signals, and some genomes with huge rearrangements cannot be used to detect WGD using synteny block identification. Therefore, the most credible conclusions depend on complementary evidence from different methods (href="#bib12" rid="bib12" class=" bibr popnode">Chen and Birchler, 2013, href="#bib52" rid="bib52" class=" bibr popnode">Soltis and Soltis, 2012, href="#bib55" rid="bib55" class=" bibr popnode">Tiley et al., 2016).Here, using all three methods, we analyzed a genome of Astreopora (Astreopora sp1) as an outgroup, and five Acropora genomes (Acropora digitifera, Acropora gemmifera, Acropora subglabra, Acropora echinata, and Acropora tenuis) to address the following questions: (1) whether and when WGD occurred in Acropora, (2) what is the fate of duplicated genes in Acropora after the event, (3) what are the gene expression patterns of duplicated genes across five developmental stages in A. digitifera, and (4) what is the role of WGD in diversification of toxic proteins in Acropora (href="#mmc1" rid="mmc1" class=" supplementary-material">Figure S2).
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介造礁珊瑚为支持无数海洋生物的热带海洋生态系统做出了贡献,但珊瑚礁是由于最近海水温度,污染和其他压力因素的增加,威胁日益严重(,)。 Acroporidae是在Cindaria门(一种动物进化枝的基础门之一)内建立珊瑚的珊瑚家族。根据化石记录和分子系统发育证据,Astreopora(Anthozoa:Acroporidae)是顶孢菌系的姐妹属。重要的是,Acropora(Anthozoa:Acroporidae)是造礁珊瑚种类最多的一种,包括印度太平洋中的150多种物种,被认为起源于Astreopora〜60 mya,具有多种物种转换( ,)。调查该群体的进化历史对我们对珊瑚礁生物多样性和保护的理解有重要贡献。在野生动物中观察到了棘足动物物种之间的杂交(),并且在不同的棘足动物谱系中已经确定了可变的染色体数()。此外,在多个Acropora基因家族中也发现了基因重复(href="#bib23" rid="bib23" class=" bibr popnode"> Hamada等人,2013 )。根据它们独特的生活方式,可变的染色体数和复杂的网状进化史,印度太平洋太平洋斜足目可能起源于多倍体(href="#bib20" rid="bib20" class=" bibr popnode"> Gacesa等人, 2015 ,href="#bib23" rid="bib23" class=" bibr popnode">滨田等人,2013 ,href =“#bib30” rid =“ bib30” class =“ bibr popnode”> Kenyon,1997 ,href="#bib42" rid="bib42" class=" bibr popnode">理查兹和霍布斯,2015 ,href =“ #bib58“ rid =” bib58“ class =” bibr popnode“>范·欧本(Van Oppen)等人,2001 ,href="#bib62" rid="bib62" class=" bibr popnode"> Vollmer和Palumbi ,2002 ,href="#bib68" rid="bib68" class=" bibr popnode"> Willis等人,2006 )。但是,没有直接的分子和遗传证据支持这一假设。古代的完整(大规模)基因/基因组复制(WGD)或古多倍体已经塑造了脊椎动物,绿色植物和其他生物的基因组,并且通常被视为生物起源和多样化的进化标志(href="#bib50" rid="bib50" class=" bibr popnode"> Soltis等人,2015 ,href =“ #bib56“ rid =” bib56“ class =” bibr popnode“>范德佩尔等人,2009 ,href="#bib57" rid="bib57" class=" bibr popnode">范德Peer等人,2017 )(href="#mmc1" rid="mmc1" class="Supplementary-material">图S1 )。脊椎动物的共同祖先记录了两个单独的WGD事件(两轮WGD)(href="#bib15" rid="bib15" class=" bibr popnode"> Dehal和Boore,2005 )在硬骨鱼的最后一个祖先中已经报道了另一个主要的WGD(href="#bib13" rid="bib13" class=" bibr popnode"> Christoffels et al。,2004 ,href =“#bib21” rid =“ bib21” class =“ bibr popnode”> Glasauer and Neuhauss,2014 )。同时,被子植物共享一个古老的WGD事件(href="#bib27" rid="bib27" class=" bibr popnode"> Jiao等人,2011 ,href =“#bib55”摆脱=“ bib55” class =“ bibr popnode”> Tiley等人,2016 )和许多其他WGD事件已在主要被子植物进化枝中报道(href =“#bib49” rid =“ bib49” class =“ bibr popnode”> Soltis等,2009 ,href="#bib59" rid="bib59" class=" bibr popnode"> Vanneste等,2014 ,< a href =“#bib66” rid =“ bib66” class =“ bibr popnode”> Wang等人,2018 )。另外,建议在寒武纪期间发生两轮脊椎动物的WGD,并且据信植物中的某些WGD在白垩纪-第三纪期间发生(href =“#bib48” rid =“ bib48” class = “ bibr popnode”>史密斯等人,2013 ,href="#bib57" rid="bib57" class=" bibr popnode">范德佩尔等人,2017 ,< a href =“#bib59” rid =“ bib59” class =“ bibr popnode”> Vanneste等人,2014 )。因此,WGD被认为是减少灭绝风险的重要进化方式(href="#bib56" rid="bib56" class=" bibr popnode"> Van de Peer等,2009 , href="#bib57" rid="bib57" class=" bibr popnode">范德佩尔等人,2017 ,href =“#bib59” rid =“ bib59” class =“ bibr popnode“> Vanneste等人,2014 )。但是,对刺胞草属植物WGD的研究受到的关注较少(href="#bib29" rid="bib29" class=" bibr popnode"> Kenny et al。,2016 ,href =“# bib33“ rid =” bib33“ class =” bibr popnode“> Li等人,2018年,href="#bib44" rid="bib44" class=" bibr popnode">施瓦格等人,2017 ,href =“#bib56” rid =“ bib56” class =“ bibr popnode “>范德佩尔等人,2009 ,href="#bib57" rid="bib57" class=" bibr popnode">范德佩尔等人,2017 )。 WGD创建的基因在二倍体化过程中具有复杂的命运(href="#bib46" rid="bib46" class=" bibr popnode">塞门和沃尔夫,2007 ,href =“#bib56” rid = “ bib56” class =“ bibr popnode”>范德佩尔等人,2009 )。通常,重复的基因之一由于基因功能的冗余而被沉默或丢失,这被称为“非功能化”。但是,由于亚功能化,新功能化和剂量效应,保留的重复基因提供了生物学复杂性和进化新颖性的重要来源(href="#bib14" rid="bib14" class=" bibr popnode"> Conant等人,2014年,href="#bib27" rid="bib27" class=" bibr popnode"> Jiao等人,2011 )。复制的基因可能通过亚功能化发展互补的基因功能,通过新功能化发展新的功能,或者由于剂量效应而保留在具有不同基因表达的复杂调控网络中。例如,重复的MADS-Box基因对于植物的花卉发育和表型新颖性的起源至关重要(href="#bib56" rid="bib56" class=" bibr popnode"> Van de Peer等,2009 ,href="#bib61" rid="bib61" class=" bibr popnode"> Veron等人,2006 )。重复的同源异型盒基因为脊椎动物的发育提供了原始的遗传物质(href="#bib11" rid="bib11" class=" bibr popnode"> Canestro等人,2013 ,href =“#bib21” rid =“ bib21” class =“ bibr popnode”> Glasauer和Neuhauss,2014 )。此外,基因复制后的毒素多样化已被认为是增强动物适应性的机制(href="#bib31" rid="bib31" class=" bibr popnode"> Kondrashov,2012 ,href =“#bib32” rid =“ bib32” class =“ bibr popnode”>Kordiš和Gubenšek,2000 ),尤其是在蛇毒中(href =“#bib25” rid =“ bib25” class =“ bibr popnode“> Hargreaves等人,2014 ,href="#bib63" rid="bib63" class=" bibr popnode"> Vonk等人,2013 )。有趣的是,有毒蛋白质参与了珊瑚的各种重要过程,包括捕食,保护免受捕食者,伤口愈合等(href="#bib2" rid="bib2" class=" bibr popnode"> Armoza-Zvuloni等等人,2016 ,href="#bib4" rid="bib4" class=" bibr popnode"> Ben-Ari等人,2018 ),但目前尚不清楚基因的来源几十年前,同工酶电泳和限制性片段长度多态性被用于鉴定多倍体中的基因重复(href="#bib19" rid="bib19" class=" bibr popnode">Fürthauer等等,1999 ,href="#bib53" rid="bib53" class=" bibr popnode"> Stuber and Goodman,1983 )。在过去的10年中,下一代测序技术以大大降低的成本和减少的工作量生成了大量的基因组数据(href="#bib22" rid="bib22" class=" bibr popnode"> Goodwin等人, 2016 ,href="#bib24" rid="bib24" class=" bibr popnode"> Hardwick等人,2017 )。基于(1)分析基因组中重复基因的每个同义位点(dS)的同义替换率(基于dS的方法),开发了三种主要的方法来识别WGD(基于a的方法)(href =“#bib8” rid = “ bib8” class =“ bibr popnode”> Blanc等人,2003 ,href="#bib34" rid="bib34" class=" bibr popnode">林奇和科纳里,2000年 ,href="#bib59" rid="bib59" class=" bibr popnode">范内斯特等人,2014 ,href =“#bib72” rid =“ bib72” class =“ bibr popnode “> Mao,2019 ),(2)在多个基因组中进行基因家族的系统发育分析(系统发育分析)(href="#bib9" rid="bib9" class=" bibr popnode"> Blomme等。 ,2006 ,href="#bib27" rid="bib27" class=" bibr popnode"> Jiao等人,2011 ),以及(3)与姐妹比较的同义块识别没有WGD(沿袭分析)的血统(href="#bib10" rid="bib10" class=" bibr popnode"> Bowers等人,2003 ,href =“#bib15” rid =“ bib15“ class =” bibr popnode“> Dehal和Boore,2005 ,href =”#bib71“ rid =“ bib71” class =“ bibr popnode”> Zhang等人,2017 )。基于dS的方法和系统生物学分析仅需要基因家族信息,而无需基因组组装。但是,过高的WGD无法通过基于dS的方法检测到,而基因树的不确定性通常会导致系统生物学分析方面的偏差。两种方法都严重依赖基因家族的估计和聚类。不准确的基因预测(基因模型)和粗糙的基因家族聚类算法很容易无法使用这两种方法检测到WGD。相反,协同分析在很大程度上依赖于基因组组装质量。不良的装配质量可能会隐藏WGD信号,并且某些具有重排大的基因组不能用于使用Syntony Block识别来检测WGD。因此,最可靠的结论取决于不同方法的补充证据(href="#bib12" rid="bib12" class=" bibr popnode"> Chen and Birchler,2013 ,href =“# bib52“ rid =” bib52“ class =” bibr popnode“> Soltis and Soltis,2012 ,href="#bib55" rid="bib55" class=" bibr popnode"> Tiley等人,2016年)。在这里,我们使用这三种方法分析了Astreopora(Astreopora sp1)的基因组,以及五个Acropora基因组(Acropora digitifera,Acropora gemmifera,Acropora subglabra,Acropora echinata和Acropora tenuis)。以下问题:(1)Acropora中是否发生WGD,何时发生;(2)事件发生后 Acropora 中重复基因的命运如何;(3)重复基因的基因表达方式是什么?跨越了 A 的五个发展阶段。 digitifera ,以及(4)WGD在 Acropora 中有毒蛋白质多样化中的作用是什么(href =“#mmc1” rid =“ mmc1” class =“补充材料“>图S2 )。

著录项

  • 期刊名称 iScience
  • 作者

    Yafei Mao; Noriyuki Satoh;

  • 作者单位
  • 年(卷),期 2019(13),-1
  • 年度 2019
  • 页码 20–32
  • 总页数 44
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号