首页> 美国卫生研究院文献>iScience >The Input-Output Relationship of AIY Interneurons in Caenorhabditis elegans in Noisy Environment
【2h】

The Input-Output Relationship of AIY Interneurons in Caenorhabditis elegans in Noisy Environment

机译:嘈杂环境下秀丽隐杆线虫AIY中间神经的输入-输出关系

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionInformation processing from sensory inputs to regulate behavior in noisy environments is a fundamental topic in neuroscience. To improve our understanding of such information processing, the relationship between the noise level of the stimulation and animal perception has been studied in depth (, , ). However, at the neuronal level these relationships remain largely unclear. Although the input-output relationship in neurons has also been thoroughly investigated (, , , , , , ), it remains unknown how neurotransmitter inputs affect postsynaptic neuronal activity in vivo in noisy environments, because simultaneous measurement of input and output in vivo is technically difficult due to the complexity of the networks involved (, , ).The nematode Caenorhabditis elegans is a suitable model for investigating this question. It has a simple neuronal circuit (), as well as optical transparency, making it well suited for visualization with various imaging techniques (). The AIY interneurons of C. elegans are particularly suitable for this purpose; they receive various sensory inputs, including gustatory, olfactory, and thermal information (href="#bib5" rid="bib5" class=" bibr popnode">Chalasani et al., 2007, href="#bib7" rid="bib7" class=" bibr popnode">Clark et al., 2006, href="#bib40" rid="bib40" class=" bibr popnode">Satoh et al., 2014), which regulate the animal's behavior following integration (href="#bib22" rid="bib22" class=" bibr popnode">Kocabas et al., 2012, href="#bib28" rid="bib28" class=" bibr popnode">Li et al., 2014, href="#bib40" rid="bib40" class=" bibr popnode">Satoh et al., 2014). Furthermore, AIY interneurons show a sporadic Ca2+ response regardless of the presence of explicit stimulation (href="#bib5" rid="bib5" class=" bibr popnode">Chalasani et al., 2007, href="#bib7" rid="bib7" class=" bibr popnode">Clark et al., 2006), whereas sensory neurons show a deterministic Ca2+ response to environmental stimulation (href="#bib5" rid="bib5" class=" bibr popnode">Chalasani et al., 2007, href="#bib7" rid="bib7" class=" bibr popnode">Clark et al., 2006, href="#bib20" rid="bib20" class=" bibr popnode">Kato et al., 2014, href="#bib46" rid="bib46" class=" bibr popnode">Tsukada et al., 2016). Both glutamate receptor mutations and the ablation of sensory neurons have been shown to abolish the Ca2+ response to sensory stimulation in AIY (href="#bib5" rid="bib5" class=" bibr popnode">Chalasani et al., 2007, href="#bib7" rid="bib7" class=" bibr popnode">Clark et al., 2006). This suggests that glutamate input to AIY can evoke the sporadic Ca2+ response as a result of sensory input integration under natural noise.We used several simultaneous fluorescence imaging techniques to identify the input-output relationship in AIY in a noisy environment in vivo. To ensure that Ca2+ spikes could be considered AIY output, we first showed that depolarization of the membrane potential precedes Ca2+ spikes, by simultaneously imaging both in AIY. We used an odor, isoamyl alcohol (IAA) as model stimulation to modulate the sensory inputs, and simultaneous imaging of glutamate input and the Ca2+ response showed that glutamate input decreases when the Ca2+ spikes occur, with or without odor stimulation, and vice versa. We also investigated these relationships in both the glutamate receptor and glutamate-defective mutants and showed that fluctuations in glutamate input evoke the sporadic Ca2+ response in AIY. As far as we know, this is the first report identifying the input-output relationship for fluctuations under natural environmental noise in vivo. Glutamate inputs represent sensory inputs, and AIY neurons have been reported to regulate behavior; our results thus suggest that fluctuation in sensory input induces behavioral variability.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介从感觉输入中进行信息处理以调节嘈杂环境中的行为是神经科学的基本主题。为了增进我们对这种信息处理的理解,已经对刺激的噪声水平与动物感知之间的关系进行了深入研究(,,)。但是,在神经元水平上,这些关系仍然不清楚。尽管还对神经元的输入输出关系进行了彻底的研究(,,,,,,,),但是在嘈杂的环境中,神经递质的输入如何影响突触后突触后神经元的活动仍是未知的,因为在体内同时测量输入和输出在技术上是困难的由于涉及的网络(,)的复杂性。线虫秀丽隐杆线虫是研究此问题的合适模型。它具有简单的神经元回路()和光学透明性,使其非常适合使用各种成像技术进行可视化()。秀丽隐杆线虫的AIY中间神经元特别适合于此目的。他们会收到各种感官输入,包括味觉,嗅觉和热量信息(href="#bib5" rid="bib5" class=" bibr popnode"> Chalasani等人,2007 ,href = “#bib7” rid =“ bib7” class =“ bibr popnode”>克拉克等人,2006 ,href="#bib40" rid="bib40" class=" bibr popnode">萨托等人(2014年,))来规范动物整合后的行为(href="#bib22" rid="bib22" class=" bibr popnode"> Kocabas等,2012 ,href =“#bib28” rid =“ bib28” class =“ bibr popnode”> Li et al。,2014 ,href="#bib40" rid="bib40" class=" bibr popnode">萨托等,2014 )。此外,AIY中神经元显示零星的Ca 2 + 响应,无论是否存在显式刺激(href="#bib5" rid="bib5" class=" bibr popnode"> Chalasani等。 ,2007 ,href="#bib7" rid="bib7" class=" bibr popnode">克拉克等人,2006 ),而感觉神经元显示出确定性Ca 2 + 对环境刺激的响应(href="#bib5" rid="bib5" class=" bibr popnode"> Chalasani et al。,2007 ,href =“#bib7” rid =“ bib7” class =“ bibr popnode”>克拉克等人,2006 ,href="#bib20" rid="bib20" class=" bibr popnode">加藤等人,2014 ,href="#bib46" rid="bib46" class=" bibr popnode"> Tsukada等人,2016 )。谷氨酸受体突变和感觉神经元消融均已证明可消除AIY对感觉刺激的Ca 2 + 响应(href =“#bib5” rid =“ bib5” class =“ bibr popnode“> Chalasani等,2007 ,href="#bib7" rid="bib7" class=" bibr popnode"> Clark等,2006 )。这表明由于自然噪声下的感官输入整合,输入AIY的谷氨酸可以引起偶发的Ca 2 + 反应。我们使用了几种同时荧光成像技术来识别AIY中的输入输出关系。 vivo中嘈杂的环境。为了确保可以将Ca 2 + 尖峰视为AIY输出,我们首先通过在AIY中同时对两者进行成像,来证明膜电位的去极化先于Ca 2 + 尖峰。我们以异味戊醇(IAA)为模型刺激来调节感觉输入,同时对谷氨酸输入和Ca 2 + 响应的同时成像显示,当Ca 2时谷氨酸输入减少+ 会出现尖峰,有或没有气味刺激,反之亦然。我们还研究了谷氨酸受体和谷氨酸缺陷突变体中的这些关系,并发现谷氨酸输入的波动引起了AIY中偶发的Ca 2 + 反应。据我们所知,这是第一份确定体内自然环境噪声下波动的输入输出关系的报告。谷氨酸输入代表感觉输入,据报道AIY神经元可调节行为。因此,我们的结果表明,感觉输入的波动会引起行为变异。

著录项

  • 期刊名称 iScience
  • 作者单位
  • 年(卷),期 2019(19),-1
  • 年度 2019
  • 页码 191–203
  • 总页数 22
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号