首页> 美国卫生研究院文献>iScience >Dynamic Adaptive Two-Dimensional Supramolecular Assemblies for On-Demand Filtration
【2h】

Dynamic Adaptive Two-Dimensional Supramolecular Assemblies for On-Demand Filtration

机译:用于按需过滤的动态自适应二维超分子组件

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe design and fabrication of supramolecular polymers and materials by precise "bottom-up" self-assembly of building blocks has been an appealing and vital theme for chemists owing to the distinct dynamic properties of supramolecular materials (, , , , , , , , , , ). Many efforts have been realized in the constructions of sophisticated supramolecular architectures by elaborating the structural design of building blocks and controlling the dimensions, sizes, and manners of the further self-assembly to form diversified supramolecular materials exhibiting the superiority and functionality (, , , , href="#bib64" rid="bib64" class=" bibr popnode">Zhang et al., 2018c, href="#bib65" rid="bib65" class=" bibr popnode">Zhang et al., 2018d, href="#bib55" rid="bib55" class=" bibr popnode">Xing et al., 2018, href="#bib25" rid="bib25" class=" bibr popnode">Ji et al., 2018, href="#bib45" rid="bib45" class=" bibr popnode">Tian et al., 2014, href="#bib43" rid="bib43" class=" bibr popnode">Tao et al., 2019). Meanwhile, man-made 2D organic materials have also attracted much attention of chemists since the rise of graphene (href="#bib10" rid="bib10" class=" bibr popnode">Colson and Dichtel, 2013, href="#bib68" rid="bib68" class=" bibr popnode">Zhuang et al., 2015). Although amounts of 2D metal/covalent organic frameworks have been built and fabricated by different kinds of synthetic methodologies and libraries (href="#bib50" rid="bib50" class=" bibr popnode">Wang et al., 2018a, href="#bib51" rid="bib51" class=" bibr popnode">Wang et al., 2018b, href="#bib52" rid="bib52" class=" bibr popnode">Wang et al., 2018c, href="#bib53" rid="bib53" class=" bibr popnode">Wang et al., 2019, href="#bib3" rid="bib3" class=" bibr popnode">Baek et al., 2013, href="#bib34" rid="bib34" class=" bibr popnode">Matsumoto et al., 2018, href="#bib54" rid="bib54" class=" bibr popnode">Xiao et al., 2018), the design and construction of 2D supramolecular assemblies are still under fledging stage, especially those exhibiting large-area, ultra-thin, free-standing, water-soluble features (href="#bib61" rid="bib61" class=" bibr popnode">Zhang et al., 2013, href="#bib36" rid="bib36" class=" bibr popnode">Pfeffermann et al., 2015, href="#bib60" rid="bib60" class=" bibr popnode">Yue et al., 2016).A reasonable strategy to fabricate 2D supramolecular assemblies involves the design of rigid and multi-branched monomers, which would define the assemblies growth in a highly ordered direction, resulting in rigid supramolecular frameworks (href="#bib15" rid="bib15" class=" bibr popnode">Dong et al., 2018). However, the strictly rigid structure mostly inhibited the large-area polymer growth because of the vertical packing tendency of rigid structures and the lack of flexibility, which is significant to allow the adaptive interactions among small-molecular-weight 2D assemblies with different edge shapes. Some groups strive to overcome this issue by interfacial self-assembly strategy (href="#bib36" rid="bib36" class=" bibr popnode">Pfeffermann et al., 2015, href="#bib15" rid="bib15" class=" bibr popnode">Dong et al., 2018), however, requiring special processing technique. Flexible hyperbranched monomers are good examples to form large-size supramolecular assemblies (href="#bib24" rid="bib24" class=" bibr popnode">Huang and Gibson, 2004, href="#bib17" rid="bib17" class=" bibr popnode">Fernández et al., 2008, href="#bib66" rid="bib66" class=" bibr popnode">Zhou et al., 2010, href="#bib12" rid="bib12" class=" bibr popnode">Dong et al., 2011a, href="#bib13" rid="bib13" class=" bibr popnode">Dong et al., 2011b, href="#bib14" rid="bib14" class=" bibr popnode">Dong et al., 2014, href="#bib42" rid="bib42" class=" bibr popnode">Tao et al., 2012, href="#bib16" rid="bib16" class=" bibr popnode">Fang et al., 2013, href="#bib48" rid="bib48" class=" bibr popnode">Wang et al., 2014) but remain a challenging issue how to precisely construct the dimensions of the assemblies. In many cases, such flexible hyperbranched building blocks tend to self-assemble into spheres or particles because of the flexibility-induced surface curving (href="#bib12" rid="bib12" class=" bibr popnode">Dong et al., 2011a, href="#bib13" rid="bib13" class=" bibr popnode">Dong et al., 2011b, href="#bib21" rid="bib21" class=" bibr popnode">Groombridge et al., 2017, href="#bib46" rid="bib46" class=" bibr popnode">Tian et al., 2017, href="#bib11" rid="bib11" class=" bibr popnode">Datta et al., 2018, href="#bib31" rid="bib31" class=" bibr popnode">Liu et al., 2018). Hence, it is still a fundamental question of whether the 2D supramolecular assemblies with large area can be achieved by the direct solution-phase growth strategies rather than by the self-assembly on interfaces/surfaces.Meanwhile, one of the representative features of supramolecular assemblies involves the capability of stimuli-responsive materials owing to the unique dynamic nature. Numerous supramolecular assemblies, such as zero-dimensional vesicle/micelle (href="#bib18" rid="bib18" class=" bibr popnode">Gaitzsch et al., 2016, href="#bib50" rid="bib50" class=" bibr popnode">Wang et al., 2018a, href="#bib51" rid="bib51" class=" bibr popnode">Wang et al., 2018b, href="#bib52" rid="bib52" class=" bibr popnode">Wang et al., 2018c, href="#bib19" rid="bib19" class=" bibr popnode">Gao et al., 2018, href="#bib8" rid="bib8" class=" bibr popnode">Chen et al., 2018, href="#bib23" rid="bib23" class=" bibr popnode">Hu et al., 2018), one-dimensional fibers/tubes (href="#bib22" rid="bib22" class=" bibr popnode">Hendricks et al., 2017, href="#bib9" rid="bib9" class=" bibr popnode">Cohen et al., 2018, href="#bib56" rid="bib56" class=" bibr popnode">Yagai et al., 2019), and three-dimensional gels (href="#bib2" rid="bib2" class=" bibr popnode">Appel et al., 2012, href="#bib26" rid="bib26" class=" bibr popnode">Jones and Steed, 2016, href="#bib47" rid="bib47" class=" bibr popnode">Voorhaar and Hoogenboom, 2016), have been proved to be talented in many potential applications. However, the alterability and stimuli-responsive behavior of 2D supramolecular assemblies have not been exploited yet. Hence, our motivation in these issues locates on following two original hypotheses: (1) whether we can enable the structural rigidity and flexibility in a single 2D supramolecular assembly; (2) what unprecedented properties and functions can be brought in this rigid and flexible 2D supramolecular assemblies. Herein, we report a rationally designed 2D supramolecular assembly to demonstrate the above-mentioned proposals, achieving the direct aqueous self-assembly to form 2D supramolecular assemblies that integrate large area (up to 1000 μm2), nano-sized thickness, water-solubility, and stimuli-induced alterability.In our design, a semi-rigid tri-branch compound trans->1 was constructed (href="/pmc/articles/PMC6660589/figure/fig1/" target="figure" class="fig-table-link figpopup" rid-figpopup="fig1" rid-ob="ob-fig1" co-legend-rid="lgnd_fig1">Figure 1). The unique Y-type structure bears two viologen units and a single azobenzene unit, which can bind together in the cavity of macrocycle cucurbit[8]uril (CB[8]) to form high-affinity ternary host-guest complex (href="#bib6" rid="bib6" class=" bibr popnode">Barrow et al., 2015, href="#bib4" rid="bib4" class=" bibr popnode">Del Barrio et al., 2013, href="#bib44" rid="bib44" class=" bibr popnode">Tian et al., 2012, href="#bib35" rid="bib35" class=" bibr popnode">Pazos et al., 2019). Notably, the viologen-terminated aromatic part bears a rigid backbone with a fixed angle of 120°, whereas the azobenzene-terminated linker is flexible. This semi-rigid design is expected to enable a dendrimer-like supramolecular self-assembly in aqueous solution. We expect that the rigid 120° aromatic backbone could support sufficient space for the tubular macrocycle CB[8] and hence inhibit the steric-hindrance-caused low polymerization degree of the supramolecular assemblies. Meanwhile, the simultaneous presence of soft glycol linker provides flexibility to the resulting supramolecular assemblies. This design is distinct from the previously reported strictly rigid supramolecular frameworks, in which the polymer skeleton is rigid and stable. It is expected that our "semi-rigid" design could generate a unique large-sized supramolecular assembly that simultaneously exhibits the capability of dynamic stimuli responsiveness and adaptiveness.href="/pmc/articles/PMC6660589/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">class="inline_block ts_canvas" href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=6660589_gr1.jpg" target="tileshopwindow">target="object" href="/pmc/articles/PMC6660589/figure/fig1/?report=objectonly">Open in a separate windowclass="figpopup" href="/pmc/articles/PMC6660589/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">Figure 1Schematic Illustration and Molecular StructureThe molecular structure of trans->1 and the schematic representation of the supramolecular assemblies of trans->1 and CB[8]. The backbone of the final assemblies is simplified for clear presentation.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介通过精确的“自下而上”自我设计和制造超分子聚合物和材料由于超分子材料(,,,,,,,,,,,)具有独特的动态特性,因此构件的组装对于化学家来说是一个有吸引力且至关重要的主题。通过阐述构件的结构设计并控制尺寸,大小和进一步自我组装的方式,以形成具有优越性和功能性的多样化超分子材料,人们在复杂的超分子体系结构的构建中已经做出了许多努力。 href="#bib64" rid="bib64" class=" bibr popnode"> Zhang等人,2018c ,href =“#bib65” rid =“ bib65” class =“ bibr popnode” > Zhang et al。,2018d ,href="#bib55" rid="bib55" class=" bibr popnode"> Xing et al。,2018 ,href =“#bib25 “ rid =” bib25“ class =” bibr popnode“> Ji等人,2018 ,href="#bib45" rid="bib45" class=" bibr popnode"> Tian等人,2014年,href="#bib43" rid="bib43" class=" bibr popnode"> Tao等人,2019 )。同时,自石墨烯兴起以来,人造2D有机材料也引起了化学家的广泛关注(href="#bib10" rid="bib10" class=" bibr popnode"> Colson and Dichtel,2013 ,href="#bib68" rid="bib68" class=" bibr popnode">壮等人,2015 )。虽然已经通过不同种类的合成方法和库构建和制造了大量2D金属/共价有机骨架(href="#bib50" rid="bib50" class=" bibr popnode"> Wang等,2018a < / a>,href="#bib51" rid="bib51" class=" bibr popnode"> Wang等人,2018b ,href =“#bib52” rid =“ bib52” class = “ bibr popnode”> Wang等人,2018c ,href="#bib53" rid="bib53" class=" bibr popnode"> Wang等人,2019 ,href =“#bib3” rid =“ bib3” class =“ bibr popnode”> Baek等人,2013 ,href="#bib34" rid="bib34" class=" bibr popnode"> Matsumoto等等人,2018 ,href="#bib54" rid="bib54" class=" bibr popnode"> Xiao等人,2018 )中,二维超分子组件的设计和构造是仍处于起步阶段,尤其是那些具有大面积,超薄,独立式水溶性特征的产品(href="#bib61" rid="bib61" class=" bibr popnode"> Zhang等人, 2013 ,href="#bib36" rid="bib36" class=" bibr popnode"> Pfeffermann等人。,2015 ,href="#bib60" rid="bib60" class=" bibr popnode"> Yue等,2016 )。制造二维超分子组装的合理策略包括刚性和多支链单体的设计,这将定义装配体在高度有序的方向上的生长,从而形成刚性的超分子框架(href="#bib15" rid="bib15" class=" bibr popnode"> Dong等人。,2018 )。但是,由于刚性结构的垂直堆积趋势和缺乏柔韧性,严格刚性的结构大部分抑制了大面积聚合物的生长,这对于允许具有不同边缘形状的小分子量2D组件之间的自适应相互作用具有重要意义。一些小组通过界面自组装策略努力克服这一问题(href="#bib36" rid="bib36" class=" bibr popnode"> Pfeffermann et al。,2015 ,href =“ #bib15“ rid =” bib15“ class =” bibr popnode“> Dong等人,2018 ),但是需要特殊的处理技术。柔性超支化单体是形成大型超分子组装的好例子(href="#bib24" rid="bib24" class=" bibr popnode"> Huang和Gibson,2004 ,href =“# bib17“ rid =” bib17“ class =” bibr popnode“>费尔南德斯等人,2008 ,href="#bib66" rid="bib66" class=" bibr popnode"> Zhou等人, 2010 ,href="#bib12" rid="bib12" class=" bibr popnode"> Dong等人,2011a ,href =“#bib13” rid =“ bib13” class =“ bibr popnode”> Dong等人,2011b ,href="#bib14" rid="bib14" class=" bibr popnode"> Dong等人,2014 ,< a href =“#bib42” rid =“ bib42” class =“ bibr popnode”> Tao等人,2012 ,href="#bib16" rid="bib16" class=" bibr popnode"> Fang等人,2013 ,href="#bib48" rid="bib48" class=" bibr popnode"> Wang等人,2014 ),但如何精确定位仍然是一个具有挑战性的问题构造装配体的尺寸。在许多情况下,由于柔韧性引起的曲面弯曲,此类柔韧性超支化构建基块倾向于自组装成球体或粒子(href="#bib12" rid="bib12" class=" bibr popnode"> Dong等人。,2011a ,href="#bib13" rid="bib13" class=" bibr popnode"> Dong等人,2011b ,href="#bib21" rid="bib21" class=" bibr popnode"> Groombridge等,2017 ,href =“#bib46” rid =“ bib46” class =“ bibr popnode “> Tian等人,2017 ,href="#bib11" rid="bib11" class=" bibr popnode">达塔等人,2018 ,href =”# bib31“ rid =” bib31“ class =” bibr popnode“> Liu等人,2018 )。因此,是否可以通过直接的溶液相生长策略而不是通过界面/表面的自组装来实现大面积二维超分子组装,这仍然是一个基本问题。同时,超分子组装的代表性特征之一由于具有独特的动态特性,它涉及刺激反应材料的功能。众多超分子组装体,例如零维囊泡/胶束(href="#bib18" rid="bib18" class=" bibr popnode"> Gaitzsch et al。,2016 ,href =“# bib50“ rid =” bib50“ class =” bibr popnode“> Wang等,2018a ,href="#bib51" rid="bib51" class=" bibr popnode"> Wang等, 2018b ,href="#bib52" rid="bib52" class=" bibr popnode"> Wang等人,2018c ,href =“#bib19” rid =“ bib19” class =“ bibr popnode”> Gao等人,2018 ,href="#bib8" rid="bib8" class=" bibr popnode"> Chen等人,2018 ,< a href =“#bib23” rid =“ bib23” class =“ bibr popnode”> Hu et al。,2018 ),一维纤维/管(href =“#bib22” rid =“ bib22 “ class =” bibr popnode“> Hendricks等,2017 ,href="#bib9" rid="bib9" class=" bibr popnode"> Cohen等,2018 , href="#bib56" rid="bib56" class=" bibr popnode"> Yagai等人,2019 )和三维凝胶(href =“#bib2” rid =“ bib2 “ class =” bibr popnode“> Appel等人,2012 ,href =”#bib26“ rid =” bib26“ class =” bibr popnode“> Jones和Steed,2016 ,href="#bib47" rid="bib47" class=" bibr popnode"> Voorhaar和Hoogenboom,2016 )被证明是有才华的在许多潜在的应用中。然而,二维超分子组装的可变性和刺激响应行为尚未被开发。因此,我们在这些问题上的动机基于以下两个原始假设:(1)是否可以在单个2D超分子组装中实现结构刚度和柔性? (2)在这种刚性和柔性的2D超分子组件中可以带来什么前所未有的特性和功能。本文中,我们报告了合理设计的2D超分子组装体,以证明上述建议,实现了直接的水自组装以形成集成大面积(最大1000μm 2 ),纳米级的2D超分子组装体大小的厚度,水溶性和刺激性引起的可变性。在我们的设计中,构建了半刚性三分支化合物反式> 1 (href =“ / pmc / articles / PMC6660589 / figure / fig1 /“ target =” figure“ class =” fig-table-link figpopup“ rid-figpopup =” fig1“ rid-ob =” ob-fig1“ co-legend-rid =” lgnd_fig1“>图1 < / a>)。独特的Y型结构带有两个紫胶单元和一个偶氮苯单元,它们可以在大环葫芦[8]尿素(CB [8])的腔中结合在一起,形成高亲和力的三元主客体复合体(href =“#bib6” rid =“ bib6” class =“ bibr popnode”>巴罗等人,2015 ,href="#bib4" rid="bib4" class=" bibr popnode">德尔巴里奥et al。,2013 ,href="#bib44" rid="bib44" class=" bibr popnode"> Tian et al。,2012 ,href =“#bib35” rid =“ bib35” class =“ bibr popnode”> Pazos等人,2019 )。值得注意的是,端基为紫精的芳族部分带有刚性骨架,固定角度为120°,而偶氮苯端基的连接基则是柔性的。这种半刚性设计有望在水溶液中实现树枝状大分子超分子自组装。我们期望刚性的120°芳香族骨架可以为管状大环CB [8]支撑足够的空间,从而抑制超分子组装体的空间位阻引起的低聚合度。同时,同时存在的软二醇接头为所得的超分子组装体提供了灵活性。该设计不同于先前报道的严格刚性的超分子框架,其中聚合物骨架刚性且稳定。可以预期,我们的“半刚性”设计可以生成独特的大型超分子装配体,同时具有动态刺激响应能力和适应能力。<!-fig ft0-> <!-fig mode = art f1 -> href="/pmc/articles/PMC6660589/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1"> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ inline_block ts_canvas” href =“ / core / lw / 2.0 / html / tileshop_pmc / tileshop_pmc_inline.html?title = Click%20on%20image%20to% 20zoom&p = PMC3&id = 6660589_gr1.jpg“ target =” tileshopwindow“> target="object" href="/pmc/articles/PMC6660589/figure/fig1/?report=objectonly">在单独的窗口中打开 class =“ figpopup” href =“ / pmc / articles / PMC6660589 / figure / fig1 /” target =“ figure” rid-figpopup =“ fig1” rid-ob =“ ob-fig1 “>图1 <!-标题a7->示意图和分子结构反式> 1 的分子结构和超分子的示意图反-> 1 和CB [8]的矩形集合。简化了最终装配的主干,以使其清晰可见。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号