首页> 美国卫生研究院文献>The Journal of Biological Chemistry >Positioning the 5′-flap junction in the active site controls the rate of flap endonuclease-1–catalyzed DNA cleavage
【2h】

Positioning the 5′-flap junction in the active site controls the rate of flap endonuclease-1–catalyzed DNA cleavage

机译:将5-襟翼接头放置在活性位点可控制襟翼内切核酸酶-1催化的DNA切割速率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Flap endonucleases catalyze cleavage of single-stranded DNA flaps formed during replication, repair, and recombination and are therefore essential for genome processing and stability. Recent crystal structures of DNA-bound human flap endonuclease (hFEN1) offer new insights into how conformational changes in the DNA and hFEN1 may facilitate the reaction mechanism. For example, previous biochemical studies of DNA conformation performed under non-catalytic conditions with Ca2+ have suggested that base unpairing at the 5′-flap:template junction is an important step in the reaction, but the new structural data suggest otherwise. To clarify the role of DNA changes in the kinetic mechanism, we measured a series of transient steps, from substrate binding to product release, during the hFEN1-catalyzed reaction in the presence of Mg2+. We found that whereas hFEN1 binds and bends DNA at a fast, diffusion-limited rate, much slower Mg2+-dependent conformational changes in DNA around the active site are subsequently necessary and rate-limiting for 5′-flap cleavage. These changes are reported overall by fluorescence of 2-aminopurine at the 5′-flap:template junction, indicating that local DNA distortion (e.g. disruption of base stacking observed in structures), associated with positioning the 5′-flap scissile phosphodiester bond in the hFEN1 active site, controls catalysis. hFEN1 residues with distinct roles in the catalytic mechanism, including those binding metal ions (Asp-34 and Asp-181), steering the 5′-flap through the active site and binding the scissile phosphate (Lys-93 and Arg-100), and stacking against the base 5′ to the scissile phosphate (Tyr-40), all contribute to these rate-limiting conformational changes, ensuring efficient and specific cleavage of 5′-flaps.
机译:瓣核酸内切酶催化在复制,修复和重组过程中形成的单链DNA瓣的裂解,因此对于基因组加工和稳定性至关重要。 DNA结合的人类皮瓣内切核酸酶(hFEN1)的最新晶体结构为DNA和hFEN1的构象变化如何促进反应机理提供了新见解。例如,以前在非催化条件下用Ca 2 + 进行的DNA构象的生化研究表明,在5'-flap:template连接处的碱基不配对是反应中的重要步骤,但是新的结构数据表明并非如此。为了阐明DNA改变在动力学机制中的作用,我们在存在Mg 2 + 的hFEN1催化的反应过程中,测量了一系列从基质结合到产物释放的瞬时步骤。我们发现,尽管hFEN1以快速,扩散受限的速率结合和弯曲DNA,但随后在活性位点附近的DNA中,Mg 2 + 依赖的构象变化要慢得多,并且对5'具有限速作用瓣裂解。这些变化通过5'-flap:template交界处的2-氨基嘌呤荧光报告,表明存在局部DNA畸变(例如,在结构中观察到的碱基堆积破坏),与5'-flap易裂磷酸二酯键的定位有关。 hFEN1活性位点,控制催化作用。 hFEN1残基在催化机制中具有独特的作用,包括那些结合金属离子(Asp-34和Asp-181),操纵5'-襟翼穿过活性位点并结合易裂解的磷酸盐(Lys-93和Arg-100)的残基,并与碱基5'堆叠在可裂解的磷酸酯(Tyr-40)上,均有助于这些限速构象变化,从而确保有效且特异性地裂解5'襟翼。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号