首页> 美国卫生研究院文献>The Journal of Biological Chemistry >Equilibrium and ultrafast kinetic studies manipulating electron transfer:A short-lived flavin semiquinone is not sufficient for electronbifurcation
【2h】

Equilibrium and ultrafast kinetic studies manipulating electron transfer:A short-lived flavin semiquinone is not sufficient for electronbifurcation

机译:操纵电子转移的平衡和超快动力学研究:寿命短的黄素半醌不足以产生电子分叉

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Flavin-based electron transfer bifurcation is emerging as a fundamental and powerful mechanism for conservation and deployment of electrochemical energy in enzymatic systems. In this process, a pair of electrons is acquired at intermediate reduction potential (i.e. intermediate reducing power), and each electron is passed to a different acceptor, one with lower and the other with higher reducing power, leading to “bifurcation.” It is believed that a strongly reducing semiquinone species is essential for this process, and it is expected that this species should be kinetically short-lived. We now demonstrate that the presence of a short-lived anionic flavin semiquinone (ASQ) is not sufficient to infer the existence of bifurcating activity, although such a species may be necessary for the process. We have used transient absorption spectroscopy to compare the rates and mechanisms of decay of ASQ generated photochemically in bifurcating NADH-dependent ferredoxin-NADP+ oxidoreductase and the non-bifurcating flavoproteins nitroreductase, NADH oxidase, and flavodoxin. We found that different mechanisms dominate ASQ decay in the different protein environments, producing lifetimes ranging over 2 orders of magnitude. Capacity for electron transfer among redox cofactors versus charge recombination with nearby donors can explain therange of ASQ lifetimes that we observe. Our results support a model wherein efficientelectron propagation can explain the short lifetime of the ASQ of bifurcatingNADH-dependent ferredoxin-NADP+ oxidoreductase I and can be an indicationof capacity for electron bifurcation.
机译:基于黄素的电子转移分支正在成为一种在酶系统中保存和部署电化学能量的基本而强大的机制。在该过程中,以中等还原电位(即中等还原力)获取一对电子,并且每个电子都传递给不同的受体,一个受体的还原力较低,而另一个则具有较高的还原力,从而导致“分叉”。据信,强烈还原的半醌物质对于该过程是必不可少的,并且预期该物质应在动力学上是短命的。我们现在证明,存在一个短寿命的阴离子黄素半醌(ASQ)不足以推断存在分叉活性,尽管该过程可能是必需的。我们使用瞬态吸收光谱法比较了分叉的NADH依赖性铁氧还蛋白-NADP + 氧化还原酶和非分叉的黄素蛋白硝基还原酶,NADH氧化酶和黄酮毒素的光化学反应产生的ASQ的衰减速率和机理。我们发现,在不同的蛋白质环境中,不同的机制主导着ASQ的衰变,产生的寿命超过2个数量级。氧化还原辅因子之间的电子转移能力与附近供体的电荷重组可以解释我们观察到的ASQ寿命范围。我们的结果支持了一种有效的模型电子传播可以解释分叉的ASQ的短寿命NADH依赖的铁氧还蛋白-NADP + 氧化还原酶I,可能是一种适应症电子分叉的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号