首页> 美国卫生研究院文献>The Journal of Biological Chemistry >Mapping Key Residues of ISD11 Critical for NFS1-ISD11 Subcomplex Stability
【2h】

Mapping Key Residues of ISD11 Critical for NFS1-ISD11 Subcomplex Stability

机译:映射ISD11的关键残基对于NFS1-ISD11亚复合物的稳定性至关重要

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biogenesis of the iron-sulfur (Fe-S) cluster is an indispensable process in living cells. In mammalian mitochondria, the initial step of the Fe-S cluster assembly process is assisted by the NFS1-ISD11 complex, which delivers sulfur to scaffold protein ISCU during Fe-S cluster synthesis. Although ISD11 is an essential protein, its cellular role in Fe-S cluster biogenesis is still not defined. Our study maps the important ISD11 amino acid residues belonging to putative helix 1 (Phe-40), helix 3 (Leu-63, Arg-68, Gln-69, Ile-72, Tyr-76), and C-terminal segment (Leu-81, Glu-84) are critical for in vivo Fe-S cluster biogenesis. Importantly, mutation of these conserved ISD11 residues into alanine leads to its compromised interaction with NFS1, resulting in reduced stability and enhanced aggregation of NFS1 in the mitochondria. Due to altered interaction with ISD11 mutants, the levels of NFS1 and Isu1 were significantly depleted, which affects Fe-S cluster biosynthesis, leading to reduced electron transport chain complex (ETC) activity and mitochondrial respiration. In humans, a clinically relevant ISD11 mutation (R68L) has been associated in the development of a mitochondrial genetic disorder, COXPD19. Our findings highlight that the ISD11 R68A/R68L mutation display reduced affinity to form a stable subcomplex with NFS1, and thereby fails to prevent NFS1 aggregation resulting in impairment of the Fe-S cluster biogenesis. The prime affected machinery is the ETC complex, which showed compromised redox properties, causing diminished mitochondrial respiration. Furthermore, the R68L ISD11 mutant displayed accumulation of mitochondrial iron and reactive oxygen species, leading to mitochondrial dysfunction, which correlates with the phenotype observed in COXPD19 patients.
机译:铁-硫(Fe-S)簇的生物发生是活细胞中必不可少的过程。在哺乳动物的线粒体中,Fe-S簇组装过程的初始步骤由NFS1-ISD11配合物协助,该配合物在Fe-S簇合成过程中将硫传递到支架蛋白ISCU。尽管ISD11是必需蛋白,但其在Fe-S簇生物发生中的细胞作用仍未确定。我们的研究绘制了推定的螺旋1(Phe-40),螺旋3(Leu-63,Arg-68,Gln-69,Ile-72,Tyr-76)和C末端区段( Leu-81,Glu-84)对于体内Fe-S簇生物发生至关重要。重要的是,这些保守的ISD11残基突变为丙氨酸会导致其与NFS1的相互作用受损,从而导致线粒体中NFS1的稳定性降低和聚集增强。由于与ISD11突变体相互作用的改变,NFS1和Isu1的水平显着减少,这影响了Fe-S团簇的生物合成,从而导致电子传输链复合物(ETC)活性和线粒体呼吸作用降低。在人类中,与临床相关的ISD11突变(R68L)与线粒体遗传病COXPD19的发生有关。我们的发现突出表明,ISD11 R68A / R68L突变显示出降低的亲和力,可与NFS1形成稳定的亚复合物,因此无法阻止NFS1聚集,从而导致Fe-S簇生物发生受损。受影响的主要机器是ETC复合物,该复合物显示出受损的氧化还原特性,导致线粒体呼吸减少。此外,R68L ISD11突变体显示出线粒体铁和活性氧的积累,导致线粒体功能障碍,这与在COXPD19患者中观察到的表型相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号