首页> 美国卫生研究院文献>The Journal of Biological Chemistry >Characterization of the Pseudomonas aeruginosa Glycoside Hydrolase PslG Reveals That Its Levels Are Critical for Psl Polysaccharide Biosynthesis and Biofilm Formation
【2h】

Characterization of the Pseudomonas aeruginosa Glycoside Hydrolase PslG Reveals That Its Levels Are Critical for Psl Polysaccharide Biosynthesis and Biofilm Formation

机译:铜绿假单胞菌糖苷水解酶PslG的表征表明其水平对Psl多糖的生物合成和生物膜形成至关重要。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A key component of colonization, biofilm formation, and protection of the opportunistic human pathogen Pseudomonas aeruginosa is the biosynthesis of the exopolysaccharide Psl. Composed of a pentameric repeating unit of mannose, glucose, and rhamnose, the biosynthesis of Psl is proposed to occur via a Wzx/Wzy-dependent mechanism. Previous genetic studies have shown that the putative glycoside hydrolase PslG is essential for Psl biosynthesis. To understand the function of this protein, the apo-structure of the periplasmic domain of PslG (PslG(31–442)) and its complex with mannose were determined to 2.0 and 1.9 Å resolution, respectively. Despite a domain architecture and positioning of catalytic residues similar to those of other family 39 glycoside hydrolases, PslG(31–442) exhibits a unique 32-Å-long active site groove that is distinct from other structurally characterized family members. PslG formed a complex with two mannose monosaccharides in this groove, consistent with binding data obtained from intrinsic tryptophan fluorescence. PslG was able to catalyze the hydrolysis of surface-associated Psl, and this activity was abolished in a E165Q/E276Q double catalytic variant. Surprisingly, P. aeruginosa variants with these chromosomal mutations as well as a pslG deletion mutant were still capable of forming Psl biofilms. However, overexpression of PslG in a pslG deletion background impaired biofilm formation and resulted in less surface-associated Psl, suggesting that regulation of this enzyme is important during polysaccharide biosynthesis.
机译:胞外多糖Ps1的生物合成是定居,生物膜形成和对机会性人类病原体铜绿假单胞菌的保护的关键组成部分。由甘露糖,葡萄糖和鼠李糖的五聚体重复单元组成,Psl的生物合成被提议通过Wzx / Wzy依赖性机制发生。先前的遗传研究表明,推定的糖苷水解酶PslG对于Psl生物合成至关重要。为了了解这种蛋白质的功能,分别测定了PslG(PslG(31–442))的质膜结构及其与甘露糖的复合物的apo结构,分辨率分别为2.0和1.9Å。尽管结构域和催化残基的位置与其他39族糖苷水解酶类似,但PslG(31-442)仍具有独特的32-Å-长活性位点凹槽,与其他结构特征家族成员不同。 PslG在此凹槽中形成了带有两个甘露糖单糖的复合物,这与从固有色氨酸荧光获得的结合数据一致。 PslG能够催化与表面相关的Psl的水解,并且在E165Q / E276Q双催化变体中取消了这种活性。出乎意料的是,具有这些染色体突变的铜绿假单胞菌变体以及pslG缺失突变体仍能够形成psl生物膜。但是,PslG缺失背景中PslG的过表达会损害生物膜的形成,并导致与表面相关的Psl减少,这表明该酶的调节在多糖生物合成过程中很重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号