首页> 美国卫生研究院文献>The Journal of Biological Chemistry >Structures of the alkanesulfonate monooxygenase MsuD provide insight into C–S bond cleavage substrate scope and an unexpected role for the tetramer
【2h】

Structures of the alkanesulfonate monooxygenase MsuD provide insight into C–S bond cleavage substrate scope and an unexpected role for the tetramer

机译:链烷磺酸盐单氧化酶的结构提供了对C-S粘合性裂解底物范围和四聚体的意外作用的洞察力

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bacterial two-component flavin-dependent monooxygenases cleave the stable C–S bond of environmental and anthropogenic organosulfur compounds. The monooxygenase MsuD converts methanesulfonate (MS−) to sulfite, completing the sulfur assimilation process during sulfate starvation, but the mechanism of this conversion remains unclear. To explore the mechanism of C–S bond cleavage, we report a series of crystal structures of MsuD from Pseudomonas fluorescens in different liganded states. This report provides the first crystal structures of an alkanesulfonate monooxygenase with a bound flavin and alkanesulfonate, elucidating the roles of the active site lid, the protein C terminus, and an active site loop in flavin and/or alkanesulfonate binding. These structures position MS− closest to the flavin N5 position, consistent with an N5-(hydro)peroxyflavin mechanism rather than a classical C4a-(hydro)peroxyflavin mechanism. A fully enclosed active site is observed in the ternary complex, mediated by interchain interaction of the C terminus at the tetramer interface. These structures identify an unexpected function of the protein C terminus in this protein family in stabilizing tetramer formation and the alkanesulfonate-binding site. Spurred by interest from the crystal structures, we conducted biochemical assays and molecular docking that redefine MsuD as a small- to medium-chain alkanesulfonate monooxygenase. Functional mutations verify the sulfonate-binding site and reveal the critical importance of the protein C terminus for monooxygenase function. These findings reveal a deeper understanding of MsuD’s functionality at the molecular level and consequently how it operates within its role as part of the sulfur assimilation pathway.
机译:细菌双组分依赖性单氧基酶切割环境和人为有机脲化合物的稳定C-S键。单氧基酶MSUD将甲磺酸盐(MS-)转化为亚硫酸盐,在硫酸盐饥饿期间完成硫同化过程,但该转化率的机理尚不清楚。为了探讨C-S键切割的机制,我们在不同的配饰状态下从荧光荧光荧光书中报告了一系列MSUD的晶体结构。该报告提供了具有结合的黄素和链烷磺酸盐的链烷磺酸盐单氧基酶的第一晶体结构,阐明了活性位点盖,蛋白C末端和活性位点环的作用和/或链烷磺酸盐结合。这些结构将最接近Flavin N5位置的位置,与N5-(Hydro)过氧吡啶机制一致,而不是经典的C4A-(Hydro)过氧吡喃酶机制。在三元复合物中观察到完全封闭的活性位点,通过在四聚机界面中的C末端的间歇性相互作用介导。这些结构鉴定在该蛋白质家族中蛋白C末端在稳定四聚体形成和链烷磺酸盐结合位点的意外功能。由晶体结构的兴趣刺激,我们进行了生物化学测定和分子对接,其将MSUD重新定义为小于中链链烷磺酸盐单氧基酸盐。功能性突变验证磺酸盐结合位点,并揭示蛋白C末端对单氧化酶功能的临界重要性。这些发现揭示了对MSUD的函数在分子水平上的更深入了解,因此它如何在其作用中作为硫磺同化途径的一部分。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号