首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Computational Offloading in Mobile Edge with Comprehensive and Energy Efficient Cost Function: A Deep Learning Approach
【2h】

Computational Offloading in Mobile Edge with Comprehensive and Energy Efficient Cost Function: A Deep Learning Approach

机译:具有全面和节能成本函数的移动边缘计算卸载:深入学习方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In mobile edge computing (MEC), partial computational offloading can be intelligently investigated to reduce the energy consumption and service delay of user equipment (UE) by dividing a single task into different components. Some of the components execute locally on the UE while the remaining are offloaded to a mobile edge server (MES). In this paper, we investigate the partial offloading technique in MEC using a supervised deep learning approach. The proposed technique, comprehensive and energy efficient deep learning-based offloading technique (CEDOT), intelligently selects the partial offloading policy and also the size of each component of a task to reduce the service delay and energy consumption of UEs. We use deep learning to find, simultaneously, the best partitioning of a single task with the best offloading policy. The deep neural network (DNN) is trained through a comprehensive dataset, generated from our mathematical model, which reduces the time delay and energy consumption of the overall process. Due to the complexity and computation of the mathematical model in the algorithm being high, due to trained DNN the complexity and computation are minimized in the proposed work. We propose a comprehensive cost function, which depends on various delays, energy consumption, radio resources, and computation resources. Furthermore, the cost function also depends on energy consumption and delay due to the task-division-process in partial offloading. None of the literature work considers the partitioning along with the computational offloading policy, and hence, the time and energy consumption due to task-division-process are ignored in the cost function. The proposed work considers all the important parameters in the cost function and generates a comprehensive training dataset with high computation and complexity. Once we get the training dataset, then the complexity is minimized through trained DNN which gives faster decision making with low energy consumptions. Simulation results demonstrate the superior performance of the proposed technique with high accuracy of the DNN in deciding offloading policy and partitioning of a task with minimum delay and energy consumption for UE. More than 70% accuracy of the trained DNN is achieved through a comprehensive training dataset. The simulation results also show the constant accuracy of the DNN when the UEs are moving which means the decision making of the offloading policy and partitioning are not affected by the mobility of UEs.
机译:在移动边缘计算(MEC),部分计算卸载可以智能研究通过将单个任务分成不同的组件,以减少的用户设备(UE)的能量消耗和服务延迟。一些组件在UE上本地执行的同时被卸载到移动边缘服务器(MES)的剩余。在本文中,我们研究使用监督的深度学习方法在MEC部分卸载技术。所提出的技术,全面,高效节能的深学习型卸载技术(CEDOT),智能选择部分卸载政策,也是一个任务,以减少服务延迟和UE的能量消耗的每个组件的大小。我们使用深层学习查找,同时,用最好的卸载策略,单个任务的最佳分区。深神经网络(DNN)通过综合数据集的训练,从我们的数学模型,从而降低了延时和整个过程的能源消耗产生的。由于复杂性和算法是高的数学模型计算,由于训练的DNN的复杂性和计算最小化的建议的工作。我们提出了一个全面的成本函数,这取决于不同的延迟,能源消耗,无线资源和计算资源。此外,成本函数还取决于能量消耗和延迟由于在局部卸载任务分割过程。文学作品中没有考虑划分与计算卸载政策一起,因此,时间和能源消耗,由于任务的分工过程中的成本函数被忽略。所提出的工作考虑所有的成本函数的重要参数,并产生具有高运算和复杂的综合性训练数据集。一旦我们得到的训练数据集,那么复杂,通过训练的DNN赋予更快的决策与低能源消耗做最小化。仿真结果表明,在决定卸载政策,以最小的延迟和能量消耗UE任务的分割DNN的高精度提出的技术的卓越性能。受过训练的DNN的超过70%的准确度是通过全面的训练数据集来实现的。仿真结果还表明,当UE被移动,这意味着卸载政策和分区的决策不会受到UE的移动性的DNN的不断准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号