首页> 美国卫生研究院文献>Chemical Science >Plasmonic photothermal catalysis for solar-to-fuel conversion: current status and prospects
【2h】

Plasmonic photothermal catalysis for solar-to-fuel conversion: current status and prospects

机译:太阳能光热催化为太阳能 - 燃料转换:现状和前景

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Solar-to-fuel conversion through photocatalytic processes is regarded as promising technology with the potential to reduce reliance on dwindling reserves of fossil fuels and to support the sustainable development of our society. However, conventional semiconductor-based photocatalytic systems suffer from unsatisfactory reaction efficiencies due to limited light harvesting abilities. Recent pioneering work from several groups, including ours, has demonstrated that visible and infrared light can be utilized by plasmonic catalysts not only to induce local heating but also to generate energetic hot carriers for initiating surface catalytic reactions and/or modulating the reaction pathways, resulting in synergistically promoted solar-to-fuel conversion efficiencies. In this perspective, we focus primarily on plasmon-mediated catalysis for thermodynamically uphill reactions converting CO2 and/or H2O into value-added products. We first introduce two types of mechanism and their applications by which reactions on plasmonic nanostructures can be initiated: either by photo-induced hot carriers (plasmonic photocatalysis) or by light-excited phonons (photothermal catalysis). Then, we emphasize examples where the hot carriers and phonon modes act in concert to contribute to the reaction (plasmonic photothermal catalysis), with special attention given to the design concepts and reaction mechanisms of the catalysts. We discuss challenges and future opportunities relating to plasmonic photothermal processes, aiming to promote an understanding of underlying mechanisms and provide guidelines for the rational design and construction of plasmonic catalysts for highly efficient solar-to-fuel conversion.
机译:通过光催化过程的太阳能 - 燃料转换被认为是有希望的技术,有可能减少对化石燃料的DWWindling储备并支持我们社会的可持续发展。然而,由于灵敏度有限,常规的基于半导体的光催化系统患有不令人满意的反应效率。来自包括我们的几个群体的最近开创性的工作已经证明,等离子体催化剂不仅可以诱导局部加热,还可以利用可见光和红外光,而且可以产生能量的热载体,以启动表面催化反应和调节反应途径,得到的在协同促进的太阳能转换效率。在这种观点中,我们主要专注于等离子体介导的催化,用于将CO 2和/或H2O转化为增值产物的热力上坡反应。我们首先介绍两种类型的机制及其应用,通过该方法可以启动对等离子体纳米结构的反应:通过光诱导的热载体(等离子体光催化)或通过光激发声子(光热催化)。然后,我们强调了热载体和声子模式以音乐会作用的例子,以有助于反应(血浆光热催化),特别注意催化剂的设计概念和反应机制。我们讨论了与等离子体光热过程有关的挑战和未来机会,旨在促进对潜在机制的理解,并为高效的太阳能到燃料转化提供了高效的太阳能催化剂的合理设计和构建指导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号