首页> 美国卫生研究院文献>ACS Central Science >On-Chip in Situ Monitoring of Competitive InterfacialAnionic Chemisorption as a Descriptor for Oxygen Reduction Kinetics
【2h】

On-Chip in Situ Monitoring of Competitive InterfacialAnionic Chemisorption as a Descriptor for Oxygen Reduction Kinetics

机译:片上竞争界面的现场监测阴离子化学吸附作为氧还原动力学的表征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The development of future sustainable energy technologies relies critically on our understanding of electrocatalytic reactions occurring at the electrode–electrolyte interfaces, and the identification of key reaction promoters and inhibitors. Here we present a systematic in situ nanoelectronic measurement of anionic surface adsorptions (sulfates, halides, and cyanides) on ultrathin platinum nanowires during active electrochemical processes, probing their competitive adsorption behavior with oxygenated species and correlating them to the electrokinetics of the oxygen reduction reaction (ORR). The competitive anionic adsorption features obtained from our studies provide fundamental insight into the surface poisoning of Pt-catalyzed ORR kinetics by various anionic species. Particularly, the unique nanoelectronic approach enables highly sensitive characterization of anionic adsorption and opens an efficient pathway to address the practical poisoning issue (at trace level contaminations) from a fundamental perspective. Through the identified nanoelectronic indicators, we further demonstrate thatrationally designed competitive anionic adsorption may provide improvedpoisoning resistance, leading to performance (activity and lifetime)enhancement of energy conversion devices.
机译:未来可持续能源技术的发展在很大程度上取决于我们对在电极-电解质界面发生的电催化反应的理解,以及对关键反应促进剂和抑制剂的识别。在这里,我们介绍了在主动电化学过程中超薄铂纳米线上阴离子表面吸附(硫酸盐,卤化物和氰化物)的系统原位纳米电子测量,探讨了它们与含氧物质的竞争性吸附行为,并将它们与氧还原反应的电动力学相关( ORR)。从我们的研究中获得的竞争性阴离子吸附特性为各种阴离子物种对Pt催化的ORR动力学的表面中毒提供了基本的见识。特别是,独特的纳米电子方法可实现阴离子吸附的高灵敏度表征,并为从基本角度解决实际中毒问题(痕量污染)开辟了一条有效途径。通过确定的纳米电子指标,我们进一步证明了合理设计竞争性阴离子吸附可能会改善抗中毒,导致性能(活性和寿命)增强能量转换装置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号