首页> 美国卫生研究院文献>Entropy >Investigation on the Flow Field Entropy Structure of Non-Synchronous Blade Vibration in an Axial Turbocompressor
【2h】

Investigation on the Flow Field Entropy Structure of Non-Synchronous Blade Vibration in an Axial Turbocompressor

机译:轴向涡轮机中非同步叶片振动流场熵结构的研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In order to explore the inducing factors and mechanism of the non-synchronous vibration, the flow field structure and its formation mechanism in the non-synchronous vibration state of a high speed turbocompressor are discussed in this paper, based on the fluid–structure interaction method. The predicted frequencies fBV (4.4EO), fAR (9.6EO) in the field have a good correspondence with the experimental data, which verify the reliability and accuracy of the numerical method. The results indicate that, under a deviation in the adjustment of inlet guide vane (IGV), the disturbances of pressure in the tip diffuse upstream and downstream, and maintain the corresponding relationship with the non-synchronous vibration frequency of the blade. An instability flow that developed at the tip region of 90% span emerged due to interactions among the incoming main flow, the axial separation backflow, and the tip leakage vortices. The separation vortices in the blade passage mixed up with the tip leakage flow reverse at the trailing edge of blade tip, presenting a spiral vortex structure which flows upstream to the leading edge of the adjacent blade. The disturbances of the spiral vortexes emerge to rotate at 54.5% of the rotor speed in the same rotating direction as a modal oscillation. The blade vibration in the turbocompressor is found to be related to the unsteadiness of the tip flow. The large pressure oscillation caused by the movement of the spiral vortex is regarded as the one of the main drivers for the non-synchronous vibration for the present turbocompressor, besides the deviation in the adjustment of IGV.
机译:为了探讨非同步振动的诱导因子和机理,本文基于流体 - 结构相互作用方法讨论了高速涡轮机的非同步振动状态下的流场结构及其在高速涡轮机的非同步振动状态下的形成机制。预测频率FBV(4.4eo),远景(9.6eo)与实验数据具有良好的对应关系,该数据验证了数值方法的可靠性和准确性。结果表明,在入口导向叶片(IGV)调节的偏差下,尖端在上游和下游的压力中的压力紊乱,并与刀片的非同步振动频率保持相应的关系。由于进入的主流,轴向分离回流和尖端泄漏涡流而导致的90%跨度的尖端区域的不稳定流动。叶片通道中的分离涡流在叶片尖端的后缘处与尖端泄漏流相反,呈现螺旋涡流结构,该螺旋涡流将上游流到相邻刀片的前缘。螺旋涡旋的干扰出现在与模态振荡相同的旋转方向上以54.5%的转子速度旋转。发现涡轮机中的叶片振动与尖端流的不稳定有关。除了IGV的调节时,由螺旋涡流的运动引起的大的压力振荡被认为是本涡轮机的非同步振动的主要驱动器之一。

著录项

  • 期刊名称 Entropy
  • 作者

    Mingming Zhang; Anping Hou;

  • 作者单位
  • 年(卷),期 2020(22),12
  • 年度 2020
  • 页码 1372
  • 总页数 17
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

    机译:轴向涡轮压缩机;非同步振动;流体结构相互作用;IGV的偏差;螺旋涡旋;

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号