首页> 美国卫生研究院文献>The Journal of Biological Chemistry >Multisite Phosphorylation Disrupts Arginine-Glutamate Salt Bridge Networks Required for Binding of Cytoplasmic Linker-associated Protein 2 (CLASP2) to End-binding Protein 1 (EB1)
【2h】

Multisite Phosphorylation Disrupts Arginine-Glutamate Salt Bridge Networks Required for Binding of Cytoplasmic Linker-associated Protein 2 (CLASP2) to End-binding Protein 1 (EB1)

机译:多位磷酸化破坏精氨酸-谷氨酸盐桥网络绑定细胞质接头相关蛋白2(CLASP2)到末端结合蛋白1(EB1)所需。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A group of diverse proteins reversibly binds to growing microtubule plus ends through interactions with end-binding proteins (EBs). These +TIPs control microtubule dynamics and microtubule interactions with other intracellular structures. Here, we use cytoplasmic linker-associated protein 2 (CLASP2) binding to EB1 to determine how multisite phosphorylation regulates interactions with EB1. The central, intrinsically disordered region of vertebrate CLASP proteins contains two SXIP EB1 binding motifs that are required for EB1-mediated plus-end-tracking in vitro. In cells, both EB1 binding motifs can be functional, but most of the binding free energy results from nearby electrostatic interactions. By employing molecular dynamics simulations of the EB1 interaction with a minimal CLASP2 plus-end-tracking module, we find that conserved arginine residues in CLASP2 form extensive hydrogen-bond networks with glutamate residues predominantly in the unstructured, acidic C-terminal tail of EB1. Multisite phosphorylation of glycogen synthase kinase 3 (GSK3) sites near the EB1 binding motifs disrupts this electrostatic “molecular Velcro.” Molecular dynamics simulations and 31P NMR spectroscopy indicate that phosphorylated serines participate in intramolecular interactions with and sequester arginine residues required for EB1 binding. Multisite phosphorylation of these GSK3 motifs requires priming phosphorylation by interphase or mitotic cyclin-dependent kinases (CDKs), and we find that CDK- and GSK3-dependent phosphorylation completely disrupts CLASP2 microtubule plus-end-tracking in mitosis.
机译:一组多样化的蛋白质通过与末端结合蛋白(EB)的相互作用可逆地结合到生长的微管正末端。这些+ TIP控制微管动力学和与其他细胞内结构的微管相互作用。在这里,我们使用与EB1结合的胞质接头相关蛋白2(CLASP2)来确定多位磷酸化如何调节与EB1的相互作用。脊椎动物CLASP蛋白的中央固有紊乱区域包含两个SXIP EB1结合基序,这是体外EB1介导的加-末端追踪所必需的。在细胞中,两个EB1结合基序都可以起作用,但是大多数结合自由能是由附近的静电相互作用引起的。通过使用最小的CLASP2加末端追踪模块对EB1相互作用进行分子动力学模拟,我们发现CLASP2中的保守精氨酸残基形成了广泛的氢键网络,其中谷氨酸残基主要存在于EB1的非结构化,酸性C末端尾巴中。 EB1结合基序附近的糖原合酶激酶3(GSK3)位点的多位磷酸化破坏了这种静电“分子维可牢”。分子动力学模拟和 31 NMR光谱表明,磷酸化的丝氨酸参与与EB1结合所需的精氨酸残基的分子内相互作用和螯合。这些GSK3基序的多位磷酸化需要通过相间或有丝分裂细胞周期蛋白依赖性激酶(CDKs)引发磷酸化,并且我们发现CDK和GSK3依赖性磷酸化完全破坏了有丝分裂中的CLASP2微管正端追踪。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号