首页> 美国卫生研究院文献>Biophysical Journal >The Kinetics of Nucleotide Binding to Isolated Chlamydomonas Axonemes Using UV-TIRF Microscopy
【2h】

The Kinetics of Nucleotide Binding to Isolated Chlamydomonas Axonemes Using UV-TIRF Microscopy

机译:使用UV-TIRF显微镜的核苷酸与分离的衣原体轴轴结合的动力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cilia and flagella are long, slender organelles found in many eukaryotic cells, where they have sensory, developmental, and motile functions. All cilia and flagella contain a microtubule-based structure called the axoneme. In motile cilia and flagella, which drive cell locomotion and fluid transport, the axoneme contains, along most of its length, motor proteins from the axonemal dynein family. These motor proteins drive motility by using energy derived from the hydrolysis of ATP to generate a bending wave, which travels down the axoneme. As a first step toward visualizing the ATPase activity of the axonemal dyneins during bending, we have investigated the kinetics of nucleotide binding to axonemes. Using a specially built ultraviolet total internal reflection fluorescence microscope, we found that the fluorescent ATP analog methylanthraniloyl ATP (mantATP), which has been shown to support axonemal motility, binds all along isolated, immobilized axonemes. By studying the recovery of fluorescence after photobleaching, we found that there are three mantATP binding sites: one that bleaches rapidly (time constant ≈ 1.7 s) and recovers slowly (time constant ≈ 44 s), one that bleaches with the same time constant but does not recover, and one that does not bleach. By reducing the dynein content in the axoneme using mutants and salt extraction, we provide evidence that the slow-recovering component, but not the other components, corresponds to axonemal dyneins. The recovery rate of this component, however, is too slow to be consistent with the activation of beating observed at higher mantATP concentrations; this indicates that the dyneins may be inhibited due to their immobilization at the surface. The development of this method is a first step toward direct observation of the traveling wave of dynein activity.
机译:纤毛和鞭毛是长期的,在许多真核细胞中发现的细长细胞器,它们具有感觉,发育和动机功能。所有纤毛和鞭毛都含有一种称为轴突的基于微管的结构。在动机纤毛和鞭毛中,驱动细胞运动和流体运输,轴突沿着大部分长度,来自Axonemal Dynein家族的电机蛋白。这些电机蛋白通过使用从ATP的水解的能量来产生动力,以产生弯曲的弯曲波,该弯曲波在轴索中行进。作为在弯曲期间可视化AxoNemal DoNeins的ATP酶活性的第一步,我们研究了核苷酸与轴突的动力学。使用专门构建的紫外线全内反射荧光显微镜,我们发现已被证明支持支撑Axonemal运动性的荧光ATP模拟甲基蒽酰基ATP(MantaTP),所有沿着隔离的固定化的轴突结合。通过研究光漂白后荧光的恢复,我们发现有三个螳螂结合位点:迅速漂白(时间常数≈1.7s)并缓慢恢复(时间常数≈44s),漂白具有同一时间的漂白,但是不恢复,一个不漂白的人。通过使用突变体和盐萃取减少轴突中的Dynein含量,我们提供了证据表明缓慢回收组分,但不是其他组分对应于Axonemal DoNeins。然而,这种组分的回收率太慢了,与在较高的螳螂浓度下观察到的跳动的激活是速度的。这表明由于它们在表面的固定而可能抑制DoNeins。该方法的发展是朝向直接观察Dynein活性的行波的第一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号