首页> 美国卫生研究院文献>Journal of Cerebral Blood Flow Metabolism >Highly energized inhibitory interneurons are a central element for information processing in cortical networks
【2h】

Highly energized inhibitory interneurons are a central element for information processing in cortical networks

机译:高能抑制性中间神经元是皮质网络中信息处理的核心要素

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Gamma oscillations (∼30 to 100 Hz) provide a fundamental mechanism of information processing during sensory perception, motor behavior, and memory formation by coordination of neuronal activity in networks of the hippocampus and neocortex. We review the cellular mechanisms of gamma oscillations about the underlying neuroenergetics, i.e., high oxygen consumption rate and exquisite sensitivity to metabolic stress during hypoxia or poisoning of mitochondrial oxidative phosphorylation. Gamma oscillations emerge from the precise synaptic interactions of excitatory pyramidal cells and inhibitory GABAergic interneurons. In particular, specialized interneurons such as parvalbumin-positive basket cells generate action potentials at high frequency (‘fast-spiking') and synchronize the activity of numerous pyramidal cells by rhythmic inhibition (‘clockwork'). As prerequisites, fast-spiking interneurons have unique electrophysiological properties and particularly high energy utilization, which is reflected in the ultrastructure by enrichment with mitochondria and cytochrome c oxidase, most likely needed for extensive membrane ion transport and γ-aminobutyric acid metabolism. This supports the hypothesis that highly energized fast-spiking interneurons are a central element for cortical information processing and may be critical for cognitive decline when energy supply becomes limited (‘interneuron energy hypothesis'). As a clinical perspective, we discuss the functional consequences of metabolic and oxidative stress in fast-spiking interneurons in aging, ischemia, Alzheimer's disease, and schizophrenia.
机译:伽马振荡(约30至100 Hz)通过协调海马和新皮层网络中的神经元活动,提供了在知觉,运动行为和记忆形成过程中信息处理的基本机制。我们回顾了有关潜在神经能量学的伽马振荡的细胞机制,即高氧消耗率和线粒体氧化磷酸化中毒或缺氧期间对代谢应激的异常敏感性。 γ振荡是由兴奋性锥体细胞和抑制性GABA能的中间神经元的精确突触相互作用产生的。特别是,专门的中间神经元,例如小白蛋白阳性篮状细胞会产生高频率的动作电位(“快速加标”),并通过节律性抑制(“发条”)来同步众多锥体细胞的活动。作为先决条件,快速掺入的中间神经具有独特的电生理特性,尤其是高能量利用率,这通过线粒体和细胞色素C氧化酶的富集体现在超微结构中,这很可能是广泛的膜离子运输和γ-氨基丁酸代谢所必需的。这支持了以下假设:高能快速爆发的中间神经元是皮层信息处理的核心要素,并且在能量供应受到限制时可能对认知能力下降至关重要(“中间神经元能量假设”)。从临床角度来看,我们讨论了衰老,局部缺血,阿尔茨海默氏病和精神分裂症中快速加标的中间神经元中代谢和氧化应激的功能后果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号