首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Three-Dimensional Simulation of Particle-Induced Mode Splitting in Large Toroidal Microresonators
【2h】

Three-Dimensional Simulation of Particle-Induced Mode Splitting in Large Toroidal Microresonators

机译:大环形微生物中粒子诱导模式分裂的三维模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Whispering gallery mode resonators such as silica microtoroids can be used as sensitive biochemical sensors. One sensing modality is mode-splitting, where the binding of individual targets to the resonator breaks the degeneracy between clockwise and counter-clockwise resonant modes. Compared to other sensing modalities, mode-splitting is attractive because the signal shift is theoretically insensitive to the polar coordinate where the target binds. However, this theory relies on several assumptions, and previous experimental and numerical results have shown some discrepancies with analytical theory. More accurate numerical modeling techniques could help to elucidate the underlying physics, but efficient 3D electromagnetic finite-element method simulations of large microtoroid (diameter ~90 µm) and their resonance features have previously been intractable. In addition, applications of mode-splitting often involve bacteria or viruses, which are too large to be accurately described by the existing analytical dipole approximation theory. A numerical simulation approach could accurately explain mode splitting induced by these larger particles. Here, we simulate mode-splitting in a large microtoroid using a beam envelope method with periodic boundary conditions in a wedge-shaped domain. We show that particle sizing is accurate to within 11% for radii a<λ/7, where the dipole approximation is valid. Polarizability calculations need only be based on the background media and need not consider the microtoroid material. This modeling approach can be applied to other sizes and shapes of microresonators in the future.
机译:低语廊道模式谐振器,如二氧化硅微面积器可用作敏感的生化传感器。一个感测模态是模式分割,其中各个目标与谐振器的绑定在顺时针和逆时针谐振模式之间断开退化。与其他感测模式相比,模式分裂是有吸引力的,因为信号移位对目标绑定的极性坐标是理论上不敏感的。然而,这种理论依赖于若干假设,先前的实验和数值结果表明了分析理论的一些差异。更准确的数字建模技术可以有助于阐明潜在的物理学,但高效的3D电磁有限元方法模拟大型微观(直径约90μm)及其共振特征先前已致命。此外,模式分裂的应用通常涉及细菌或病毒,这对于现有的分析偶极近似理论来说太大而无法精确描述。数值模拟方法可以准确地解释由这些较大粒子引起的模式分裂。这里,我们使用横梁包络方法模拟在大微型地毯中的模式分离,其中楔形域中的周期边界条件。我们表明,对于半径A <λ/ 7,粒子尺寸精确到11%内,其中偶极近似是有效的。极化性计算只需要基于背景介质并且不需要考虑微型材料。该建模方法可以应用于未来的其他尺寸和形状。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号