首页> 美国卫生研究院文献>Pharmaceutics >Endocytosis of Nanomedicines: The Case of Glycopeptide Engineered PLGA Nanoparticles
【2h】

Endocytosis of Nanomedicines: The Case of Glycopeptide Engineered PLGA Nanoparticles

机译:纳米药物的内吞作用:糖肽工程PLGA纳米颗粒的情况。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The success of nanomedicine as a new strategy for drug delivery and targeting prompted the interest in developing approaches toward basic and clinical neuroscience. Despite enormous advances on brain research, central nervous system (CNS) disorders remain the world’s leading cause of disability, in part due to the inability of the majority of drugs to reach the brain parenchyma. Many attempts to use nanomedicines as CNS drug delivery systems (DDS) were made; among the various non-invasive approaches, nanoparticulate carriers and, particularly, polymeric nanoparticles (NPs) seem to be the most interesting strategies. In particular, the ability of poly-lactide-co-glycolide NPs (PLGA-NPs) specifically engineered with a glycopeptide (g7), conferring to NPs’ ability to cross the blood brain barrier (BBB) in rodents at a concentration of up to 10% of the injected dose, was demonstrated in previous studies using different routes of administrations. Most of the evidence on NP uptake mechanisms reported in the literature about intracellular pathways and processes of cell entry is based on in vitro studies. Therefore, beside the particular attention devoted to increasing the knowledge of the rate of in vivo BBB crossing of nanocarriers, the subsequent exocytosis in the brain compartments, their fate and trafficking in the brain surely represent major topics in this field.
机译:纳米医学作为药物递送和靶向新策略的成功引发了人们对开发基础和临床神经科学方法的兴趣。尽管大脑研究取得了巨大进展,但中枢神经系统(CNS)障碍仍然是世界上导致残疾的主要原因,部分原因是大多数药物无法达到脑实质。进行了许多尝试将纳米药物用作中枢神经系统药物递送系统(DDS)。在各种非侵入性方法中,纳米颗粒载体,尤其是聚合物纳米颗粒(NPs)似乎是最有趣的策略。特别是,用糖肽(g7)专门设计的聚丙交酯-共-乙交酯NP(PLGA-NP)的能力,赋予了NP穿越啮齿动物的血脑屏障(BBB)的能力,浓度最高可达在先前的研究中使用不同的给药途径证明了注射剂量的10%。关于细胞内途径和细胞进入过程的文献中报道的大多数关于NP摄取机制的证据都是基于体外研究。因此,除了特别注意增加对纳米载体的体内BBB穿越速度的认识外,随后在脑室中的胞吐作用,它们的命运和在脑中的运输无疑是该领域的主要课题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号