首页> 美国卫生研究院文献>Nanomaterials >Perspectives on Nickel Hydroxide Electrodes Suitable for Rechargeable Batteries: Electrolytic vs. Chemical Synthesis Routes
【2h】

Perspectives on Nickel Hydroxide Electrodes Suitable for Rechargeable Batteries: Electrolytic vs. Chemical Synthesis Routes

机译:适用于可充电电池的镍氢氧化镍电极的观点:电解与化学合成路线

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A significant amount of work on electrochemical energy storage focuses mainly on current lithium-ion systems with the key markets being portable and transportation applications. There is a great demand for storing higher capacity (mAh/g) and energy density (Wh/kg) of the electrode material for electronic and vehicle applications. However, for stationary applications, where weight is not as critical, nickel-metal hydride (Mi-MH) technologies can be considered with tolerance to deep discharge conditions. Nickel hydroxide has gained importance as it is used as the positive electrode in nickel-metal hydride and other rechargeable batteries such as Ni-Fe and Ni-Cd systems. Nickel hydroxide is manufactured industrially by chemical methods under controlled conditions. However, the electrochemical route is relatively better than the chemical counterpart. In the electrochemical route, a well-regulated OH− is generated at the cathode forming nickel hydroxide (Ni(OH)2) through controlling and optimizing the current density. It produces nickel hydroxide of better purity with an appropriate particle size, well-oriented morphology, structure, et cetera, and this approach is found to be environmentally friendly. The structures of the nickel hydroxide and its production technologies are presented. The mechanisms of product formation in both chemical and electrochemical preparation of nickel hydroxide have been presented along with the feasibility of producing pure nickel hydroxide in this review. An advanced Ni(OH)2-polymer embedded electrode has been reported in the literature but may not be suitable for scalable electrochemical methods. To the best of our knowledge, no such insights on the Ni(OH)2 synthesis route for battery applications has been presented in the literature.
机译:电化学能量存储的大量工作主要集中在当前锂离子系统上,其具有便携式和运输应用的主要市场。存在对电子和车辆应用的电极材料的较高容量(MAH / G)和能量密度(WH / kg)的较高的需求。然而,对于静止应用,在重量不是关键的情况下,可以考虑具有对深度放电条件的耐受性的镍 - 金属氢化物(Mi-MH)技术。氢氧化镍具有重要性,因为它用作镍 - 金属氢化物中的正极和其他可充电电池,例如Ni-Fe和Ni-CD系统。氢氧化镍通过受控条件下的化学方法工业制造。然而,电化学途径比化学对应物相对较好。在电化学途径中,通过控制和优化电流密度,在形成氢氧化镍(Ni(OH)2)的阴极处产生良好调节的OH-。它产生更好的纯度氢氧化镍,具有适当的粒度,面向良好的形态,结构,等等,并且这种方法被发现是环保的。介绍了氢氧化镍及其生产技术的结构。已经介绍了氢氧化铁镍化学和电化学制剂中的产品形成机制,以及在本综述中生产纯氢氧化物的可行性。在文献中报道了先进的Ni(OH)2-聚合物嵌入电极,但可能不适用于可伸缩的电化学方法。据我们所知,在文献中介绍了对电池应用的NI(OH)2合成途径的这种见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号