首页> 美国卫生研究院文献>Nanomaterials >Molecular Understanding of Electrochemical–Mechanical Responses in Carbon-Coated Silicon Nanotubes during Lithiation
【2h】

Molecular Understanding of Electrochemical–Mechanical Responses in Carbon-Coated Silicon Nanotubes during Lithiation

机译:锂化期间碳涂覆硅纳米管中电化学响应的分子理解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Carbon-coated silicon nanotube (SiNT@CNT) anodes show tremendous potential in high-performance lithium ion batteries (LIBs). Unfortunately, to realize the commercial application, it is still required to further optimize the structural design for better durability and safety. Here, the electrochemical and mechanical evolution in lithiated SiNT@CNT nanohybrids are investigated using large-scale atomistic simulations. More importantly, the lithiation responses of SiNW@CNT nanohybrids are also investigated in the same simulation conditions as references. The simulations quantitatively reveal that the inner hole of the SiNT alleviates the compressive stress concentration between a-LixSi and C phases, resulting in the SiNT@CNT having a higher Li capacity and faster lithiation rate than SiNW@CNT. The contact mode significantly regulates the stress distribution at the inner hole surface, further affecting the morphological evolution and structural stability. The inner hole of bare SiNT shows good structural stability due to no stress concentration, while that of concentric SiNT@CNT undergoes dramatic shrinkage due to compressive stress concentration, and that of eccentric SiNT@CNT is deformed due to the mismatch of stress distribution. These findings not only enrich the atomic understanding of the electrochemical–mechanical coupled mechanism in lithiated SiNT@CNT nanohybrids but also provide feasible solutions to optimize the charging strategy and tune the nanostructure of SiNT-based electrode materials.
机译:碳涂覆的硅纳米管(SINT @ CNT)阳极在高性能锂离子电池(LIBS)中显示出巨大的电位。不幸的是,为了实现商业应用,仍然需要进一步优化结构设计以获得更好的耐用性和安全性。在此,使用大规模原子模拟研究了锂化Sint @ CNT纳米冬次锰中的电化学和机械演化。更重要的是,在与参考的相同的模拟条件下也研究了Sinw @ CNT纳米嗜酸锰的锂化反应。定量地揭示了Sint的内孔减轻了A-Lixsi和C相之间的压缩应力浓度,导致具有较高LI容量的SINT @ CNT和比SINW @ CNT更快的锂化率。接触模式显着调节内孔表面的应力分布,进一步影响形态学的演化和结构稳定性。裸SINT的内孔显示由于没有应力浓度而良好的结构稳定性,而同心SINT @ CNT的CNT由于压缩应力集中而经历显着的收缩,并且由于应力分布不匹配,偏心SINT @ CNT的偏心SINT @ CNT变形。这些发现不仅可以丰富锂化SINT @ CNT纳米冬冬胺中的电化学 - 机械耦合机制的原子理解,而且提供可行的解决方案,以优化充电策略并调整基于味道的电极材料的纳米结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号