首页> 美国卫生研究院文献>Pharmaceutics >Silicon Nanofluidic Membrane for Electrostatic Control of Drugs and Analytes Elution
【2h】

Silicon Nanofluidic Membrane for Electrostatic Control of Drugs and Analytes Elution

机译:硅纳米流体膜用于药物静电控制和分析物洗脱

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Individualized long-term management of chronic pathologies remains an elusive goal despite recent progress in drug formulation and implantable devices. The lack of advanced systems for therapeutic administration that can be controlled and tailored based on patient needs precludes optimal management of pathologies, such as diabetes, hypertension, rheumatoid arthritis. Several triggered systems for drug delivery have been demonstrated. However, they mostly rely on continuous external stimuli, which hinder their application for long-term treatments. In this work, we investigated a silicon nanofluidic technology that incorporates a gate electrode and examined its ability to achieve reproducible control of drug release. Silicon carbide (SiC) was used to coat the membrane surface, including nanochannels, ensuring biocompatibility and chemical inertness for long-term stability for in vivo deployment. With the application of a small voltage (≤ 3 V DC) to the buried polysilicon electrode, we showed in vitro repeatable modulation of membrane permeability of two model analytes—methotrexate and quantum dots. Methotrexate is a first-line therapeutic approach for rheumatoid arthritis; quantum dots represent multi-functional nanoparticles with broad applicability from bio-labeling to targeted drug delivery. Importantly, SiC coating demonstrated optimal properties as a gate dielectric, which rendered our membrane relevant for multiple applications beyond drug delivery, such as lab on a chip and micro total analysis systems (µTAS).
机译:尽管最近在药物制剂和可植入装置的进展方面,但慢性病理的个性化的长期管理仍然是难以捉摸的目标。可根据患者需要控制和量身定制的治疗给药的先进系统排除了对病理学的最佳管理,例如糖尿病,高血压,类风湿性关节炎。已经证明了一些用于药物递送的触发系统。然而,它们主要依赖于连续的外部刺激,这阻碍了他们对长期治疗的应用。在这项工作中,我们研究了一种硅纳米流体技术,该技术包括栅电极并检查其实现药物释放的可重复控制的能力。用碳化硅(SiC)用于涂覆膜表面,包括纳米通道,确保在体内部署中的长期稳定性的生物相容性和化学惰性。随着小电压(≤3Vdc)的施加到掩埋多晶硅电极,我们显示出两种模型分析 - 甲氨蝶呤和量子点的膜渗透性的体外可重复调节。甲氨蝶呤是类风湿性关节炎的一线治疗方法;量子点代表多功能纳米颗粒,具有从生物标记到靶向药物递送的广泛适用性。重要的是,SiC涂层证明了作为栅极电介质的最佳性能,这使我们的膜使得对于超出药物递送的多种应用,例如芯片和微量分析系统(μTAS)的实验室。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号