首页> 美国卫生研究院文献>Materials >Wire Arc Additive Manufacturing (WAAM) of Aluminum Alloy AlMg5Mn with Energy-Reduced Gas Metal Arc Welding (GMAW)
【2h】

Wire Arc Additive Manufacturing (WAAM) of Aluminum Alloy AlMg5Mn with Energy-Reduced Gas Metal Arc Welding (GMAW)

机译:铝合金AlMg5Mn的电弧增材制造(WAAM)和节能气体保护金属弧焊(GMAW)

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Large-scale aluminum parts are used in aerospace and automotive industries, due to excellent strength, light weight, and the good corrosion resistance of the material. Additive manufacturing processes enable both cost and time savings in the context of component manufacturing. Thereby, wire arc additive manufacturing (WAAM) is particularly suitable for the production of large volume parts due to deposition rates in the range of kilograms per hour. Challenges during the manufacturing process of aluminum alloys, such as porosity or poor mechanical properties, can be overcome by using arc technologies with adaptable energy input. In this study, WAAM of AlMg5Mn alloy was systematically investigated by using the gas metal arc welding (GMAW) process. Herein, correlations between the energy input and the resulting temperature–time-regimes show the effect on resulting microstructure, weld seam irregularities and the mechanical properties of additively manufactured aluminum parts. Therefore, multilayer walls were built layer wise using the cold metal transfer (CMT) process including conventional CMT, CMT advanced and CMT pulse advanced arc modes. These processing strategies were analyzed by means of energy input, whereby the geometrical features of the layers could be controlled as well as the porosity to area portion to below 1% in the WAAM parts. Furthermore, the investigations show the that mechanical properties like tensile strength and material hardness can be adapted throughout the energy input per unit length significantly.
机译:大型铝制零件因其优异的强度,重量轻和良好的耐腐蚀性而被用于航空航天和汽车工业。增材制造工艺可以在零件制造的同时节省成本和时间。因此,电弧沉积增材制造(WAAM)尤其适用于大批量零件的生产,因为其沉积速率在每小时公斤的范围内。铝合金制造过程中的挑战,例如孔隙率或较差的机械性能,可以通过使用具有自适应能量输入的电弧技术来克服。在这项研究中,通过使用气体保护金属电弧焊(GMAW)工艺系统地研究了AlMg5Mn合金的WAAM。在此,能量输入与所产生的温度-时间状况之间的相关性显示出对所产生的微观结构,焊缝不规则性以及增材制造的铝制零件的机械性能的影响。因此,使用包括常规CMT,CMT高级和CMT脉冲高级电弧模式在内的冷金属转移(CMT)工艺逐层构建多层墙。通过能量输入对这些加工策略进行了分析,从而可以控制层的几何特征,并将WAAM零件中的孔隙率控制在1%以下。此外,研究表明,在整个单位长度能量输入中,机械性能(如拉伸强度和材料硬度)可以得到显着调整。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号