首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Research on Structure Optimization and Measurement Method of a Large-Range Deep Displacement 3D Measuring Sensor
【2h】

Research on Structure Optimization and Measurement Method of a Large-Range Deep Displacement 3D Measuring Sensor

机译:大范围深位移3D测量传感器的结构优化与测量方法研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Deep displacement monitoring of rock and soil mass is the focus of current geological hazard research. In the previous works, we proposed a geophysical deep displacement characteristic information detection method by implanting magneto-electric sensing arrays in boreholes, and preliminarily designed the sensor prototype and algorithm of deep displacement three-dimensional (3D) measurement. On this basis, we optimized the structure of the sensing unit through 3D printing and other technologies, and improved the shape and material parameters of the permanent magnet after extensive experiments. Through in-depth analysis of the experimental data, based on the data query algorithm and the polynomial least square curve fitting theory, a new mathematical model for 3D measurement of deep displacement has been proposed. By virtue of it, the output values of mutual inductance voltage, Hall voltage and tilt measuring voltage measured by the sensing units can be converted into the variations of relative horizontal displacement, vertical displacement and axial tilt angle between any two adjacent sensing units in real time, and the measuring errors of horizontal and vertical displacement are tested to be 0–1.5 mm. The combination of structural optimization and measurement method upgrading extends the measurement range of the sensing unit from 0–30 mm to 0–50 mm. It shows that our revised deep displacement 3D measuring sensor can better meet the needs of high-precision monitoring at the initial stage of rock and soil deformation and large deformation monitoring at the rapid change and imminent-sliding stage.
机译:岩体的深度位移监测是当前地质灾害研究的重点。在以前的工作中,我们提出了通过在井眼中植入磁电传感阵列的地球物理深位移特征信息检测方法,并初步设计了深位移三维(3D)测量的传感器原型和算法。在此基础上,我们通过3D打印和其他技术优化了感应单元的结构,并通过大量实验改进了永磁体的形状和材料参数。通过对实验数据的深入分析,基于数据查询算法和多项式最小二乘曲线拟合理论,提出了一种新型的深位移3D测量数学模型。借助于此,可以将感应单元测得的互感电压,霍尔电压和倾斜测量电压的输出值实时转换为任意两个相邻感应单元之间的相对水平位移,垂直位移和轴向倾斜角度的变化。 ,水平和垂直位移的测量误差经测试为0–1.5 mm。结构优化和测量方法升级的结合将传感单元的测量范围从0–30 mm扩展到0–50 mm。结果表明,改进后的深位移3D测量传感器可以更好地满足岩土变形初期高精度监测和快速变化,即将滑移阶段大变形监测的需要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号