首页> 美国卫生研究院文献>Nanomaterials >Removal of Diclofenac Paracetamol and Carbamazepine from Model Aqueous Solutions by Magnetic Sol–Gel Encapsulated Horseradish Peroxidase and Lignin Peroxidase Composites
【2h】

Removal of Diclofenac Paracetamol and Carbamazepine from Model Aqueous Solutions by Magnetic Sol–Gel Encapsulated Horseradish Peroxidase and Lignin Peroxidase Composites

机译:磁性溶胶-凝胶包封的辣根过氧化物酶和木质素过氧化物酶复合材料从模型水溶液中去除双氯芬酸扑热息痛和卡马西平

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sustainable and green synthesis of nanocomposites for degradation of pharmaceuticals was developed via immobilization and stabilization of the biological strong oxidizing agents, peroxidase enzymes, on a solid support. Sol–gel encapsulated enzyme composites were characterized using electron microscopy (TEM, SEM), atomic force microscopy, FTIR spectroscopy, and thermogravimetric analysis. Horseradish peroxidase (HRP) and lignin peroxidase (LiP) were adsorbed onto magnetite nanoparticles and sol–gel encapsulated in a surface silica layer. Encapsulation enhanced the stability of the biocatalysts over time and thermal stability. The biocatalysts showed appreciable selectivity in oxidation of the organic drinking water pollutants diclofenac, carbamazepine, and paracetamol with improved activity being pharmaceutical specific for each enzyme. In particular, sol–gel encapsulated LiP- and HRP-based nanocomposites were active over 20 consecutive cycles for 20 days at 55 °C (24 h/cycle). The stability of the sol–gel encapsulated catalysts in acidic medium was also improved compared to native enzymes. Carbamazepine and diclofenac were degraded to 68% and 64% by sol–gel LiP composites respectively at pH 5 under elevated temperature. Total destruction of carbamazepine and diclofenac was achieved at pH 3 (55 °C) within 3 days, in the case of both immobilized HRP and LiP. Using NMR spectroscopy, characterization of the drug decomposition products, and decomposition pathways by the peroxidase enzymes suggested.
机译:通过将生物强氧化剂过氧化物酶固定在固体支持物上并使其稳定化,开发了用于降解药物的纳米复合材料的可持续和绿色合成方法。溶胶-凝胶包裹的酶复合物的特征在于电子显微镜(TEM,SEM),原子力显微镜,FTIR光谱和热重分析。辣根过氧化物酶(HRP)和木质素过氧化物酶(LiP)被吸附到磁铁矿纳米颗粒上,并溶胶-凝胶包裹在二氧化硅表面层中。包封增强了生物催化剂随时间的稳定性和热稳定性。该生物催化剂在有机饮用水污染物双氯芬酸,卡马西平和扑热息痛的氧化中表现出明显的选择性,且对每种酶具有特定的药物活性。特别是,溶胶-凝胶封装的基于LiP和HRP的纳米复合材料在55°C(24 h /周期)下连续20天连续20天具有活性。与天然酶相比,溶胶-凝胶封装的催化剂在酸性介质中的稳定性也得到了提高。在高温下,pH 5时溶胶-凝胶LiP复合材料将卡马西平和双氯芬酸分别降解为68%和64%。对于固定化的HRP和LiP,在3天内pH 3(55°C)时,卡马西平和双氯芬酸被完全破坏。建议使用NMR光谱对药物分解产物进行表征,并通过过氧化物酶进行分解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号