首页> 美国卫生研究院文献>Nanomaterials >Increased Flexibility in Lab-on-Chip Design with a Polymer Patchwork Approach
【2h】

Increased Flexibility in Lab-on-Chip Design with a Polymer Patchwork Approach

机译:聚合物拼布方法提高了芯片实验室设计的灵活性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nanofluidic structures are often the key element of many lab-on-chips for biomedical and environmental applications. The demand for these devices to be able to perform increasingly complex tasks triggers a request for increasing the performance of the fabrication methods. Soft lithography and poly(dimethylsiloxane) (PDMS) have since long been the basic ingredients for producing low-cost, biocompatible and flexible devices, replicating nanostructured masters. However, when the desired functionalities require the fabrication of shallow channels, the “roof collapse” phenomenon, that can occur when sealing the replica, can impair the device functionalities. In this study, we demonstrate that a “focused drop-casting” of h-PDMS (hard PDMS) on nanostructured regions, provides the necessary stiffness to avoid roof collapse, without increasing the probability of deep cracks formation, a drawback that shows up in the peel-off step, when h-PDMS is used all over the device area. With this new approach, we efficiently fabricate working devices with reproducible sub-100 nm structures. We verify the absence of roof collapse and deep cracks by optical microscopy and, in order to assess the advantages that are introduced by the proposed technique, the acquired images are compared with those of cracked devices, whose top layer, of h-PDMS, and with those of collapsed devices, made of standard PDMS. The geometry of the critical regions is studied by atomic force microscopy of their resin casts. The electrical resistance of the nanochannels is measured and shown to be compatible with the estimates that can be obtained from the geometry. The simplicity of the method and its reliability make it suitable for increasing the fabrication yield and reducing the costs of nanofluidic polymeric lab-on-chips.
机译:对于生物医学和环境应用而言,纳米流体结构通常是许多芯片实验室的关键要素。这些设备能够执行越来越复杂的任务的需求引发了对提高制造方法性能的要求。长期以来,软光刻和聚二甲基硅氧烷(PDMS)一直是生产低成本,生物相容性和柔性器件,复制纳米结构母版的基本成分。但是,当所需功能需要制造浅通道时,在密封复制品时可能发生的“屋顶塌陷”现象会损害设备功能。在这项研究中,我们证明了h-PDMS(硬PDMS)在纳米结构区域上的“集中式滴铸”,提供了避免屋顶坍塌的必要刚度,而不增加深层裂纹形成的可能性,这一缺点在当在整个设备区域都使用h-PDMS时,是剥离步骤。通过这种新方法,我们可以有效地制造具有可重现的100 nm以下结构的工作设备。我们通过光学显微镜验证了不存在屋顶坍塌和深裂的情况,并且为了评估所提出的技术所带来的优势,将所获取的图像与破裂设备的图像进行了比较,该设备的顶层是h-PDMS,并且以及那些由标准PDMS制成的折叠设备。通过树脂铸件的原子力显微镜研究了关键区域的几何形状。测量了纳米通道的电阻,并显示出与可以从几何形状获得的估计值兼容。该方法的简单性及其可靠性使其适合于提高制造良率并降低纳米流体聚合物芯片实验室的成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号