首页> 美国卫生研究院文献>Micromachines >Configuration and Design of Electromagnets for Rapid and Precise Manipulation of Magnetic Beads in Biosensing Applications
【2h】

Configuration and Design of Electromagnets for Rapid and Precise Manipulation of Magnetic Beads in Biosensing Applications

机译:用于生物传感应用中的快速精确操纵磁珠的电磁体的配置和设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Rapid and precise manipulation of magnetic beads on the nano and micro scales is essential in many biosensing applications, such as separating target molecules from background molecules and detecting specific proteins and DNA sequences in plasma. Accurately moving magnetic beads back and forth requires at least two adjustable magnetic field gradients. Unlike permanent magnets, electromagnets are easy to design and can produce strong and adjustable magnetic field gradients without mechanical motion, making them desirable for use in robust and safe medical devices. However, using multiple magnetic field sources to manipulate magnetic beads presents several challenges, including overlapping magnetic fields, added bulk, increased cost, and reduced durability. Here, we provide a thorough analysis, including analytical calculations, numerical simulations, and experimental measurements, of using two electromagnets to manipulate magnetic beads inside a miniature glass cell. We analyze and experimentally demonstrate different aspects of the electromagnets’ design, such as their mutual influence, the advantages and disadvantages of different pole tip geometries, and the correlation between the electromagnets’ positions and the beads’ aggregation during movement. Finally, we have devised a protocol to maximize the magnetic forces acting on magnetic beads in a two-electromagnet setup while minimizing the electromagnets’ size. We used two such electromagnets in a small footprint magnetic modulation biosensing system and detected as little as 13 ng/L of recombinant Zika virus antibodies, which enables detection of Zika IgM antibodies as early as 5 days and as late as 180 days post symptoms onset, significantly extending the number of days that the antibodies are detectable.
机译:在许多生物传感应用中,例如在纳米分子和微米尺度上快速精确地操纵磁珠是必不可少的,例如将靶分子与背景分子分离并检测血浆中的特定蛋白质和DNA序列。准确地前后移动磁珠需要至少两个可调的磁场梯度。与永磁体不同,电磁体易于设计,并且可以在不产生机械运动的情况下产生强大且可调节的磁场梯度,这使其非常适合用于坚固安全的医疗设备。然而,使用多个磁场源来操纵磁珠带来了一些挑战,包括重叠的磁场,增加的体积,增加的成本以及降低的耐用性。在这里,我们提供了一个彻底的分析,包括分析计算,数值模拟和实验测量,其中涉及使用两个电磁体来操纵微型玻璃单元内部的磁珠。我们分析并实验证明了电磁体设计的各个方面,例如它们的相互影响,不同磁极尖端几何形状的优缺点以及运动过程中电磁体位置与磁珠聚集之间的相关性。最后,我们设计了一种协议,以在两个电磁体设置中最大化作用在磁珠上的磁力,同时最小化电磁体的尺寸。我们在小型足迹磁调制生物传感系统中使用了两个这样的电磁体,并检测到低至13 ng / L的重组Zika病毒抗体,这使得Zika IgM抗体的检测最早可在症状发作后的5天到迟到的180天,大大延长了可检测抗体的天数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号