首页> 美国卫生研究院文献>Light Science Applications >Real-time transition dynamics and stability of chip-scale dispersion-managed frequency microcombs
【2h】

Real-time transition dynamics and stability of chip-scale dispersion-managed frequency microcombs

机译:芯片级色散管理频率微梳的实时过渡动力学和稳定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

(1) SEM image of the dispersion-managed microcavity. (2) Conceptual schematic of the tapered Si N microring and the breathing pulse evolution along the cavity length. The varying widths of the cavity waveguide provide an oscillating group velocity dispersion (GVD) and varying nonlinear coefficient. (3) The waveguide width changes at different locations of the microcavity. (4) The GVD (blue curve) and nonlinear coefficient (red curve) at the pump wavelength (1598.5 nm) change at different locations of the microcavity. Cold cavity transmission of the tapered Si N microring, measured with a high-resolution coherent swept wavelength interferometer (SWI) (see Supplementary Section ). The existence of higher-order transverse modes is not observed across the wavelength region of interest. The factors and wavelength-dependent free spectral range (FSR) are determined from the transmission measurement. COMSOL-modeled GVD and third-order dispersion (TOD) of the Si N waveguide with respect to the waveguide width, taking into consideration both the waveguide dimensions and the material dispersion. At the pump wavelength of 1598.5 nm, the path-averaged GVD and TOD are −2.6 fs  mm and −397 fs mm , respectively. The red dots are the measured GVD for waveguides with widths of 1.2 μm, 1.5 μm, and 1.6 μm, showing good agreement with the simulation results (see Supplementary Section ). Wavelength dependence of the FSR, determining the residual non-equidistance of the modes, , of 54 ± 3 kHz. The extracted GVD is anomalous at −6.4 ± 0.4 fs  mm , in good agreement with the simulation result. RF amplitude noise of the Kerr frequency microcomb in different states, showing the transition into the low-phase noise state with amplitude noise reaching the detector background. The 5 GHz scan range is more than 50 times the cavity linewidth. The measured optical spectrum of the dispersion-managed dissipative soliton, which fits better to a Gaussian profile (red curve) than a sech profile (blue curve). The 3 dB bandwidth of the measured spectrum is 4.78 THz, and the corresponding FWHM of the transformed-limited pulse is 92 fs. Inset: simulated comb spectrum, also showing a better match with a Gaussian profile than a sech profile. Pulse shape (black line) and temporal phase (blue line) retrieved from the FROG measurement. The FWHM pulse duration is measured to be 167 fs
机译:(1)分散液管理的微腔的SEM图像。 (2)锥形Si N微环和呼吸脉冲沿腔长演变的概念示意图。腔波导的变化宽度提供了振荡群速度色散(GVD)和变化的非线性系数。 (3)波导宽度在微腔的不同位置发生变化。 (4)泵浦波长(1598.5 nm)处的GVD(蓝色曲线)和非线性系数(红色曲线)在微腔的不同位置发生变化。用高分辨率相干扫频波长干涉仪(SWI)测量的锥形Si N微环的冷腔透射率(请参阅补充部分)。在感兴趣的波长区域内未观察到高阶横模的存在。由透射测量确定因子和与波长有关的自由光谱范围(FSR)。考虑到波导尺寸和材料色散,COMSOL模型的Si N波导的GVD和三阶色散(TOD)相对于波导宽度。在泵浦波长1598.5 pumpnm处,路径平均GVD和TOD分别为-2.6 fs mm和-397 fs mm。红点是针对宽度为1.2μm,1.5μm和1.6μm的波导测得的GVD,与仿真结果显示出很好的一致性(请参阅补充部分)。 FSR的波长依赖性,确定了模式的残余不等距,为54±3 kHz。提取的GVD在-6.4±0.4±fs·mm处异常,与模拟结果吻合良好。 Kerr频率微梳在不同状态下的RF振幅噪声,显示了在进入检测器背景时振幅噪声已转变为低相位噪声状态。 5 GHz扫描范围是腔线宽的50倍以上。色散管理的耗散孤子的实测光谱,比sech分布(蓝色曲线)更适合高斯分布(红色曲线)。被测频谱的3 dB带宽为4.78 THz,变换后的受限脉冲的相应FWHM为92 fs。插图:模拟的梳状光谱,与高斯曲线相比,与sech曲线也显示出更好的匹配。从FROG测量中获取的脉冲形状(黑线)和时间相位(蓝线)。 FWHM脉冲持续时间经测量为167 fs

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号