首页> 美国卫生研究院文献>Journal of Biomedical Optics >Temporal metabolic partitioning of the yeast and protist cellular networks: the cell is a global scale-invariant (fractal or self-similar) multioscillator
【2h】

Temporal metabolic partitioning of the yeast and protist cellular networks: the cell is a global scale-invariant (fractal or self-similar) multioscillator

机译:酵母和原生细胞网络的时间代谢分区:该细胞是全局尺度不变的(分形或自相似)多振荡子

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Britton Chance, electronics expert when a teenager, became an enthusiastic student of biological oscillations, passing on this enthusiasm to many students and colleagues, including one of us (DL). This historical essay traces BC’s influence through the accumulated work of DL to DL’s many collaborators. The overall temporal organization of mass-energy, information, and signaling networks in yeast in self-synchronized continuous cultures represents, until now, the most characterized example of elucidation of time structure. Continuous online monitoring of dissolved gases by direct measurement (membrane-inlet mass spectrometry, together with NAD(P)H and flavin fluorescence) gives strain-specific dynamic information from timescales of minutes to hours as does two-photon imaging. The predominantly oscillatory behavior of network components becomes evident, with spontaneously synchronized cellular respiration cycles between discrete periods of increased oxygen consumption (oxidative phase) and decreased oxygen consumption (reductive phase). This temperature-compensated ultradian clock provides coordination, linking temporally partitioned functions by direct feedback loops between the energetic and redox state of the cell and its growing ultrastructure. Multioscillatory outputs in dissolved gases with 13 h, 40 min, and 4 min periods gave statistical self-similarity in power spectral and relative dispersional analyses: i.e., complex nonlinear (chaotic) behavior and a functional scale-free (fractal) network operating simultaneously over several timescales.
机译:十几岁的电子专家Britton Chance成为了一个热衷于生物振荡的学生,并将这种热情传递给了许多学生和同事,包括我们当中的一个人。这篇历史性文章通过DL的大量工作向DL的许多合作者追溯了卑诗省的影响。自我同步连续培养物中酵母中能量,信息和信号网络的总体时间结构代表了迄今为止阐明时间结构最典型的例子。通过直接测量(膜入口质谱,以及NAD(P)H和黄素荧光)连续在线监测溶解气体,与双光子成像一样,可在几分钟到几小时的时间内提供特定于应变的动态信息。网络组件的主要振荡行为变得很明显,在氧气消耗增加(氧化阶段)和氧气消耗减少(还原阶段)的离散时间段之间自发地同步了细胞呼吸周期。这种经过温度补偿的超电子钟提供协调,通过细胞的高能态和氧化还原态与其不断增长的超微结构之间的直接反馈回路,将时间分割的功能联系起来。在13h,40min和4min的时间里溶解气体中的多振荡输出在功率谱和相对色散分析中给出了统计自相似性:即复杂的非线性(混沌)行为和功能性无标度(分形)网络同时运行几个时间尺度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号