首页> 美国卫生研究院文献>Experimental Biology and Medicine >Volume-by-volume bioprinting of chondrocytes-alginate bioinks in high temperature thermoplastic scaffolds for cartilage regeneration
【2h】

Volume-by-volume bioprinting of chondrocytes-alginate bioinks in high temperature thermoplastic scaffolds for cartilage regeneration

机译:软骨热塑性细胞中软骨细胞-藻酸盐生物墨水的逐体积生物打印

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biofabrication technologies with layer-by-layer simultaneous deposition of a polymeric matrix and cell-laden bioinks (also known as bioprinting) offer an alternative to conventional treatments to regenerate cartilage tissue. Thermoplastic polymers, like poly-lactic acid, are easy to print using fused deposition modeling, and the shape, mesh structure, biodegradation time, and stiffness can be easily controlled. Besides some of them being clinically approved, the high manufacturing temperatures used in bioprinting applications with these clinically available thermoplastics decrease cell viability. Geometric restriction prevents cell contact with the heated printed fibers, increasing cell viability but comprising the mechanical performance and biodegradation time of the printed parts. The objective of this study was to develop a novel volume-by-volume 3D-biofabrication process that divides the printed part into different volumes and injects the cells after each volume has been printed, once the temperature of the printed thermoplastic fibers has decreased. In order to show the suitability of this process, chondrocytes were isolated from osteoarthritic patient samples and after characterization were used to test the feasibility of the process. Human chondrocytes were bioprinted together with poly-lactic acid and apoptosis, proliferation and metabolic activity were analyzed. This novel volume-by-volume 3D-biofabrication procedure prints a mesh structure layer-by-layer with a high adhesion surface/volume ratio, driving a rapid decrease in the temperature, avoiding contact with cells in high temperature zones. In our study, chondrocytes survived the manufacturing process, with 90% of viability, 2 h after printing, and, after seven days in culture, chondrocytes proliferated and totally colonized the scaffold. The use of the volume-by-volume-based biofabrication process presented in this study shows valuable potential in the short-term development of bioprint-based clinical therapies for cartilage injuries.
机译:具有聚合物基质的逐层同时沉积和载有细胞的生物墨水(也称为生物印刷)的生物制造技术为再生软骨组织的传统治疗方法提供了替代方法。热塑性聚合物(如聚乳酸)易于使用熔融沉积建模进行印刷,并且形状,网状结构,生物降解时间和刚度可以轻松控制。除了其中一些已获得临床批准外,这些临床可得的热塑性塑料在生物打印应用中使用的高制造温度还会降低细胞活力。几何限制防止细胞与加热的印刷纤维接触,增加细胞活力,但包括印刷部件的机械性能和生物降解时间。这项研究的目的是开发一种新颖的逐个体积的3D生物制造工艺,一旦印刷的热塑性纤维的温度降低,该工艺就将印刷的部分分为不同的体积,并在每个体积印刷后注入细胞。为了显示该方法的适用性,从骨关节炎患者样品中分离出软骨细胞,并在表征后用于测试该方法的可行性。将人软骨细胞与聚乳酸一起进行生物印记,并分析其凋亡,增殖和代谢活性。这种新颖的逐个体积的3D生物制造程序可逐层打印具有高粘合表面/体积比的网状结构,从而推动温度快速降低,避免与高温区域的细胞接触。在我们的研究中,打印后2小时,软骨细胞在生产过程中存活了90%,并且在培养7天后,软骨细胞增殖并完全定殖在支架上。在这项研究中使用的基于体积的生物制造工艺的使用显示了在短期发展基于生物印记的软骨损伤临床疗法中的宝贵潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号