首页> 美国卫生研究院文献>Biophysical Reviews >Theory and applications of differential scanning fluorimetry in early-stage drug discovery
【2h】

Theory and applications of differential scanning fluorimetry in early-stage drug discovery

机译:差示扫描荧光法在早期药物发现中的理论与应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Typical thermal denaturation profile of a protein sample. Fluorescence emission changes with the temperature. The sigmoidal curve indicates the cooperative unfolding status of the protein from trace amounts of SYPRO Orange (yellow) bound to the native protein (green). The peak indicates that all proteins are unfolded to linear peptides or that the hydrophobic core is exposed to SYPRO Orange. Multiple mechanisms exist for the reduction in fluorescence after the peak, including temperature-driven decrease in the binding constant of the dye (so less dye is bound to the protein), the pocket binding the dye being more mobile (allowing for more quenching by solvent); the dye itself is more mobile such that the degree of planarity required for electron conjugation/aromatic character is lessened and protein aggregation and dye dissociation through the exclusion of the dye from hydrophobic cores. The midpoint of the transition curve is the melting temperature ( ). DSF curve showing the unfolding status of a target protein in the absence (blue) and presence (orange) of a ligand. The difference in the melting temperature indicated as Δ . Sample with high background fluorescence at the beginning at lower temperature (red) compared with a typical well-folded sample (blue) in the DSF assay. Improperly folded, aggregated, denatured protein or hydrophobic area such as a lipid bilayer exposed to the dye will cause high background at low temperatures. Multiple transitions appearing during the heating process can be caused by different domains, aggregation increasing with temperature, or ligands that stabilize a portion of the protein sample (orange); typically one similar to the native protein is accompanied by one or more at a higher temperature during the denaturation. – Overview of NanoDSF. Intrinsic fluorescence of tryptophan is measured at both 330- and 350-nm wavelengths and plotted versus temperature from 20 to 60 °C during unfolding. F330/350 fluorescence ratio intensity of tryptophan plotted against temperature. The melting temperature is calculated by the first derivative of the F330/350 plots, with the sample given here showing a of 48 °C. All the figures above represent thermal unfolding curves of the menin protein and are obtained from DSF experiments conducted in our lab. The experiments were performed by using either the Bio-Rad CFX96 Real-Time PCR system or the NanoTemper Prometheus NT.48 system. Curves were plotted from the fluorescence data using Excel
机译:蛋白质样品的典型热变性曲线。荧光发射随温度变化。 S形曲线表示从结合到天然蛋白质(绿色)的痕量SYPRO Orange(黄色)起蛋白质的协同展开状态。峰表明所有蛋白质均未折叠成线性肽,或疏水核心暴露于SYPRO Orange。存在多种降低峰后荧光的机制,包括温度驱动的染料结合常数的降低(因此较少的染料与蛋白质结合),结合染料的口袋更易移动(允许更多地被溶剂淬灭) );染料本身更具流动性,因此电子共轭/芳族特征所需的平面度降低,并且通过从疏水核中排除染料,蛋白质聚集和染料离解。过渡曲线的中点是熔融温度()。 DSF曲线显示了在不存在(蓝色)和存在(橙色)配体的情况下目标蛋白的解折叠状态。熔融温度之差表示为Δ。在DSF分析中,与典型的折叠良好的样品(蓝色)相比,样品在较低温度(红色)开始时具有较高的背景荧光。折叠,聚集,变性的蛋白质或疏水性区域(如暴露于该染料的脂质双层)的不正确会在低温下导致高背景。加热过程中出现的多个转变可能是由于不同的结构域,聚集随温度增加或配体稳定了一部分蛋白质样品(橙色)而引起的。通常,与天然蛋白质相似的一种在变性过程中在较高温度下伴随一种或多种。 – NanoDSF概述。色氨酸的内在荧光在330和350 nm波长处进行测量,并在展开过程中相对于20至60°C的温度作图。色氨酸的F330 / 350荧光比率强度相对于温度作图。熔融温度由F330 / 350曲线的一阶导数计算得出,此处给出的样品的a为48°C。上面的所有数字代表了Menin蛋白的热解链曲线,是从我们实验室中进行的DSF实验获得的。通过使用Bio-Rad CFX96实时PCR系统或NanoTemper Prometheus NT.48系统进行实验。使用Excel根据荧光数据绘制曲线

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号