首页> 美国卫生研究院文献>other >Molecular Dynamics with the United-Residue Model of Polypeptide Chains. II. Langevin and Berendsen-Bath Dynamics and Tests on Model α-Helical Systems
【2h】

Molecular Dynamics with the United-Residue Model of Polypeptide Chains. II. Langevin and Berendsen-Bath Dynamics and Tests on Model α-Helical Systems

机译:多肽链联合残基模型的分子动力学。二。 Langevin和Berendsen-Bath动力学以及模型α螺旋系统的测试

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The implementation of molecular dynamics (MD) with our physics-based protein united-residue (UNRES) force field, described in the accompanying paper (Khalili et al. J. Phys. Chem. B >2005, 109, 13785), was extended to Langevin dynamics. The equations of motion are integrated by using a simplified stochastic velocity Verlet algorithm. To compare the results to those with all-atom simulations with implicit solvent in which no explicit stochastic and friction forces are present, we alternatively introduced the Berendsen thermostat. Test simulations on the Ala10 polypeptide demonstrated that the average kinetic energy is stable with about a 5 fs time step. To determine the correspondence between the UNRES time step and the time step of all-atom molecular dynamics, all-atom simulations with the AMBER 99 force field and explicit solvent and also with implicit solvent taken into account within the framework of the generalized Born/surface area (GBSA) model were carried out on the unblocked Ala10 polypeptide. We found that the UNRES time scale is 4 times longer than that of all-atom MD simulations because the degrees of freedom corresponding to the fastest motions in UNRES are averaged out. When the reduction of the computational cost for evaluation of the UNRES energy function is also taken into account, UNRES (with hydration included implicitly in the side chain–side chain interaction potential) offers about at least a 4000-fold speed up of computations relative to all-atom simulations with explicit solvent and at least a 65-fold speed up relative to all-atom simulations with implicit solvent. To carry out an initial full-blown test of the UNRES/MD approach, we ran Berendsen-bath and Langevin dynamics simulations of the 46-residue B-domain of staphylococcal protein A. We were able to determine the folding temperature at which all trajectories converged to nativelike structures with both approaches. For comparison, we carried out ab initio folding simulations of this protein at the AMBER 99/GBSA level. The average CPU time for folding protein A by UNRES molecular dynamics was 30 min with a single Alpha processor, compared to about 152 h for all-atom simulations with implicit solvent. It can be concluded that the UNRES/MD approach will enable us to carry out microsecond and, possibly, millisecond simulations of protein folding and, consequently, of the folding process of proteins in real time.
机译:随附论文(Khalili等人,J。Phys。Chem。B > 2005 ,第109页)中介绍了利用我们基于物理的蛋白质联合残基(UNRES)力场实现分子动力学(MD)的过程。 (13785),并扩展到朗格文动力学。通过使用简化的随机速度Verlet算法对运动方程进行积分。为了将结果与使用隐式溶剂进行全原子模拟的结果(其中不存在明显的随机和摩擦力)进行比较,我们选择引入Berendsen恒温器。在Ala10多肽上的测试模拟表明,平均动能在大约5 fs的时间步长下稳定。为了确定UNRES时间步长与所有原子分子动力学的时间步长之间的对应关系,在广义Born /曲面的框架内考虑了使用AMBER 99力场和显式溶剂以及隐式溶剂进行的全原子模拟。区域(GBSA)模型在未封闭的Ala10多肽上进行。我们发现UNRES的时间尺度比所有原子MD模拟的时间尺度长4倍,因为对应于UNRES最快运动的自由度被平均了。如果还考虑了减少评估UNRES能量函数所需的计算成本,则UNRES(水化作用隐含在侧链-侧链相互作用的可能性中)相对于UNRES而言,计算速度至少提高了4000倍。使用显式溶剂进行全原子模拟,相对于使用隐式溶剂进行全原子模拟至少要快65倍。为了进行UNRES / MD方法的初步全面测试,我们对葡萄球菌蛋白A的46个残基B结构域进行了Berendsen-bath和Langevin动力学模拟。我们能够确定所有轨迹的折叠温度两种方法都融合为类似原生的结构。为了进行比较,我们在AMBER 99 / GBSA水平对该蛋白进行了从头开始的折叠模拟。使用单个Alpha处理器,通过UNRES分子动力学折叠蛋白A的平均CPU时间为30分钟,而使用隐式溶剂进行全原子模拟的平均时间约为152小时。可以得出结论,UNRES / MD方法将使我们能够实时进行蛋白质折叠的微秒甚至可能是毫秒的模拟,因此可以实时进行蛋白质折叠的过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号