首页> 美国卫生研究院文献>other >Mechanisms of Arterial Remodeling in Hypertension: Coupled Roles of Wall Shear and Intramural Stress
【2h】

Mechanisms of Arterial Remodeling in Hypertension: Coupled Roles of Wall Shear and Intramural Stress

机译:高血压的动脉重构机制:壁剪切和壁内应力的耦合作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hypertension causes and is caused by significant changes in the structure and function of arteries. Diverse data collected over the past four decades reveal that many of these changes result from a mechanical stress or strain mediated reorganization and turnover of cells and extracellular matrix in vasoaltered states that promotes a “mechanical homeostasis.” This paper reviews diverse data on the mechanobiological behaviors of vascular cells (endothelial, smooth muscle, and fibroblasts) and associated changes that manifest at the tissue level. Although experimental design is often motivated by the thought that altered flow largely affects arterial caliber and altered pressure largely affects wall thickness, all three primary descriptors of vessel geometry (radius, thickness, length) are coupled strongly to all three primary measures of stress (wall shear, circumferential, axial). Hence, mechanobiological responses by resident cells should likewise be expected to be sensitive to all three primary stresses. It also appears that cellular production of vasoactive molecules, growth factors, cytokines, matrix proteins, and proteases depends nonlinearly, often sigmoidally, on changes in stress. This suggests that there is a need to quantify coupled, nonlinear “mechanical dose response curves” that correlate altered stresses with cellular activity; moreover, mathematical models can help integrate such information across multiple length scales (from molecule to cell and tissue) and time scales (from minutes to days and months). For example, quantification of stress mediated synthesis and cross-linking of collagen organization within the hypertensive arterial wall, and associated signaling pathways, may suggest new therapeutic strategies based on targeted levels of inhibition.
机译:高血压引起并由动脉结构和功能的重大变化引起。在过去的40年中收集的各种数据表明,许多变化是由机械应力或应变介导的血管改变状态下的细胞和细胞外基质的重组和更新引起的,从而促进了“机械稳态”。本文综述了有关血管细胞(内皮细胞,平滑肌和成纤维细胞)的力学生物学行为以及在组织水平上表现出的相关变化的各种数据。尽管实验设计通常受以下思想的启发:流量改变会大大影响动脉口径,而压力改变会大大影响壁厚,但血管几何结构的所有三个主要描述因素(半径,厚度,长度)都与应力的所有三个主要衡量指标(壁)紧密相关剪切,圆周,轴向)。因此,同样应该期望驻留细胞的力学生物学反应对所有三个主要应激敏感。还似乎血管活性分子,生长因子,细胞因子,基质蛋白和蛋白酶的细胞产生非线性地(通常是S形地)取决于压力的变化。这表明需要量化耦合的非线性“机械剂量响应曲线”,该曲线将改变的压力与细胞活性相关联。此外,数学模型可以帮助跨多个长度尺度(从分子到细胞和组织)和时间尺度(从几分钟到几天和几个月)整合此类信息。例如,对高血压介导的血管壁内胶原组织的应激介导的合成和交联以及相关信号通路的量化,可能会提出基于靶向抑制水平的新治疗策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号