首页> 美国卫生研究院文献>other >Length-Scale Mediated Adhesion and Directed Growth of Neural Cells by Surface-Patterned Poly(ethylene glycol) Hydrogels
【2h】

Length-Scale Mediated Adhesion and Directed Growth of Neural Cells by Surface-Patterned Poly(ethylene glycol) Hydrogels

机译:表面模式的聚乙二醇水凝胶的长度尺度介导的粘附和神经细胞的定向生长

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We engineered surfaces that permit the adhesion and directed growth of neuronal cell processes – axons – but that prevent the adhesion of astrocytes. This effect was achieved based on the spatial distribution of cell-repulsive poly(ethylene glycol) [PEG] nanohydrogels patterned on an otherwise cell-adhesive substrate. Patterns were identified that promoted cellular responses ranging from complete non-attachment, selective attachment, and directed growth at both cellular and subcellular length scales. At the highest patterning density where the individual nanohydrogels almost overlapped, there was no cellular adhesion. As the spacing between individual nanohydrogels was increased, patterns were identified where axons could grow on the adhesive surface between nanohydrogels while astrocytes were unable to adhere. Patterns such as lines or arrays were identified that could direct the growth of these subcellular neuronal processes. At higher nanohydrogel spacings, both neurons and astrocytes adhered and grew in a manner approaching that of unpatterned control surfaces. Patterned lines could once again direct growth at cellular length scales. Significantly, we have demonstrated that the patterning of nanoscale cell-repulsive features at microscale lengths on an otherwise cell-adhesive surface can differently control the adhesion and growth of cells and cell processes based on the difference in their characteristic sizes. This concept could potentially be applied to an implantable nerve-guidance device that would selectively enable regrowing axons to bridge a spinal-cord injury without interference from the glial scar.
机译:我们设计了允许神经细胞过程(轴突)粘附和定向生长的表面,但阻止了星形胶质细胞的粘附。基于在其他具有细胞粘附性的基材上构图的排斥细胞的聚乙二醇(PEG)纳米水凝胶的空间分布,可以实现此效果。确定了在细胞和亚细胞长度尺度上促进细胞应答的模式,这些细胞应答范围从完全不附着,选择性附着和定向生长。在各个纳米水凝胶几乎重叠的最高图案密度下,没有细胞粘附。随着各个纳米水凝胶之间间隔的增加,确定了轴突可以在纳米水凝胶之间的粘附表面上生长而星形胶质细胞无法粘附的模式。确定了诸如线或阵列的模式,这些模式可以指导这些亚细胞神经元过程的生长。在较高的纳米水凝胶间距下,神经元和星形胶质细胞均以接近未形成图案的控制表面的方式粘附并生长。图案化的线可以再次指导细胞长度尺度的生长。重要的是,我们已经证明,在原本具有细胞粘附性的表面上,在微米级长度的纳米级细胞排斥特征的图案化可以基于其特征尺寸的差异来不同地控制细胞和细胞过程的粘附和生长。该概念可能会应用于可植入的神经引导装置,该装置将选择性地使重新生长的轴突能够桥接脊髓损伤,而不会受到神经胶质瘢痕的干扰。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号