首页> 美国卫生研究院文献>other >An Experimental Study on the Ultimate Strength of the Adventitia and Media of Human Atherosclerotic Carotid Arteries in Circumferential and Axial Directions
【2h】

An Experimental Study on the Ultimate Strength of the Adventitia and Media of Human Atherosclerotic Carotid Arteries in Circumferential and Axial Directions

机译:圆周和轴向人类动脉粥样硬化动脉的终极强度和介质的实验研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Atherosclerotic plaque may rupture without warning causing heart attack or stroke. Knowledge of the ultimate strength of human atherosclerotic tissues is essential for understanding the rupture mechanism and predicting cardiovascular events. Despite its great importance, experimental data on ultimate strength of human atherosclerotic carotid artery remains very sparse. This study determined the uniaxial tensile strength of human carotid artery sections containing type II and III lesions (AHA classifications). Axial and circumferential oriented adventitia, media and intact specimens (total=73) were prepared from 6 arteries. The ultimate strength in uniaxial tension was taken as the peak stress recorded when the specimen showed the first evidence of failure and the extensibility was taken as the stretch ratio at failure. The mean adventitia strength values calculated using the 1st Piola-Kirchoff stress were 1996±867kPa and 1802±703kPa in the axial and circumferential directions respectively, while the corresponding values for the media sections were 519±270kPa and 1230±533kPa. The intact specimens showed ultimate strengths similar to media in circumferential direction but were twice as strong as the media in the axial direction. Results also indicated that adventitia, media and intact specimens exhibited similar extensibility at failure, in both the axial and circumferential directions (stretch ratio 1.50 +/−0.22). These measurements of the material strength limits for human atherosclerotic carotid arteries could be useful in improving computational models that assess plaque vulnerability.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号