首页> 美国卫生研究院文献>other >Direct Spectroscopic Observation of Large Quenching of First Order Orbital Angular Momentum with Bending in Monomeric Two-Coordinate Fe(II) Primary Amido Complexes and the Profound Magnetic Effects of the Absence of Jahn- and Renner-Teller Distortions in Rigorously Linear Coordination
【2h】

Direct Spectroscopic Observation of Large Quenching of First Order Orbital Angular Momentum with Bending in Monomeric Two-Coordinate Fe(II) Primary Amido Complexes and the Profound Magnetic Effects of the Absence of Jahn- and Renner-Teller Distortions in Rigorously Linear Coordination

机译:与弯曲的单体一阶轨道角动量的大型淬火的直接观察光谱双坐标的Fe(II)主酰氨基复合物并经过严格的线性协调Jahn-和雷纳 - 泰勒扭曲的缺失的深刻磁效应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The monomeric iron(II) amido derivatives Fe{N(H)Ar*}2 (>1), Ar* = C6H3-2,6-(C6H2-2,4,6-Pri3)2, and Fe{N(H)Ar#}2 (>2), Ar# = C6H3-2,6-(C6H2-2,4,6-Me3)2, were synthesized and studied in order to determine the effects of geometric changes on their unusual magnetic properties. The compounds, which are the first stable homoleptic primary amides of iron(II), were obtained by the transamination of Fe{N(SiMe3)2}2, with HN(SiMe3)2 elimination, by the primary amines H2NAr* or H2NAr#. X-ray crystallography shows that they have either strictly linear (>1) or bent (>2, N–Fe–N = 140.9(2)°) iron coordination. Variable temperature magnetization and applied magnetic field Mössbauer spectroscopy studies reveal a very large dependence of the magnetic properties on the metal coordination geometry. At ambient temperature, the linear >1 displayed an effective magnetic moment in the range 7.0 to 7.50 μB, consistent with essentially free ion magnetism. There is a very high internal orbital field component, HL ≈ 170 T which is only exceeded by a HL ≈ 203 T of Fe{C(SiMe3)3}2. In contrast, the strongly bent >2 displays a significantly lower μeff value in the range 5.25 to 5.80 μB at ambient temperature and a much lower orbital field HL value of 116 T. The data for the two amido complexes demonstrate a very large quenching of the orbital magnetic moment upon bending the linear geometry. In addition, a strong correlation of HL with overall formal symmetry is confirmed. ESR spectroscopy supports the existence of large orbital magnetic moments in >1 and >2, and DFT calculations provide good agreement with the physical data.

著录项

相似文献

  • 外文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号